首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
某地区的低品位磁铁矿石中含有磷灰石和钛铁矿,为了充分开发利用这种低品位的矿产资源,对其进行了选矿试验研究。结果表明:原矿在-74?m占55%的磨矿细度下,采用弱磁选回收铁、磁选尾矿浮选磷灰石、浮选磷灰石尾矿再浮选钛铁矿的工艺流程,可获得TFe品位66.12%、回收率59.61%(磁性铁回收率94.48%)的铁精矿,P2O5品位36.84%、回收率92.65%的磷精矿,Ti O2品位45.87%、回收率60.32%的钛精矿。  相似文献   

2.
对某高铁铬铁矿先进行弱磁选回收磁铁矿, 后采用强磁选回收铬铁矿。研究结果表明, 磁场强度是影响选别指标的主要因素。对于Cr2O3品位为31.23%, TFe品位为28.81%的原矿, 经磁场强度为0.12 T的弱磁选, 可获得TFe品位为55.89%, 回收率为58.71%的铁精矿; 弱磁选尾矿再以磁场强度为0.9 T进行强磁选, 可以获得Cr2O3品位为41.43%, 回收率79.31%的铬精矿, 实现了铬铁矿与磁铁矿的综合利用。  相似文献   

3.
新喀里多尼亚铬铁砂铁品位32.58%,Cr2O3品位29.46%,铁和铬主要赋存在铬铁矿中。为回收利用其中的铁和铬,对其进行磁化焙烧—磁选试验。结果表明,控制煤粉配比2%、磁化焙烧温度825℃、焙烧时间35 min,铬铁砂焙烧球团矿经磨矿至-0.048 mm 52%进行1粗1精弱磁选,可获得铁品位58.67%、回收率77.06%、含Cr2O39.08%的铁精矿和Cr2O3品位46.96%、回收率84.75%、含铁15.02%的铬精矿,实现了该铬铁砂铁与铬初步的分离与富集,为确定其工业开发利用工艺流程提供了技术参考。  相似文献   

4.
湖北某磷矿尾矿P2O5品位为14.86%、MgO含量为4.01%,具有较高的回收利用价值.针对该矿样性质,采用正反浮选工艺对其进行富集回收,可获得P2O5品位29.05%、回收率81.04%、MgO含量0.96%的磷精矿,实现了磷矿尾矿的再利用.  相似文献   

5.
俄罗斯米哈伊洛夫斯克采选公司处理赤铁矿-磁铁矿铁荚岩矿石.现有的选矿工艺流程包括4段破碎,干式磁选、4段球磨和5段湿式弱磁选.在选矿厂设计中规定对湿式弱磁选尾矿再磨后用阴离子捕收荆浮选从其中回收赤铁矿.设计获得的赤铁矿浮选精矿铁品位为58.4%.但选矿厂只生产磁铁矿精矿,其中铁回收率仅为57%.选矿厂尾矿铁品位为26%~28%.本工作提出采用强磁选-浮选和浮选-强磁选方案从选矿厂弱磁选尾矿中回收赤铁矿精矿.扩大试验结果表明,这两个流程均可获得铁品位为62.7%~61.5%,对原矿铁回收率为8%~9%的赤铁矿精矿.  相似文献   

6.
陕西某地原生钛铁矿为钒钛磁铁矿选铁尾矿,原矿品位较低,矿物组成复杂,钛铁矿与榍石、钛赤铁矿等脉石矿物可浮性相近,且钛铁矿嵌布粒度细,与榍石、钛磁铁矿等脉石连生密切,分离难度大。针对该矿石性质,进行了4种方案的工艺对比试验研究,结果表明,一段高梯度强磁选-磨矿-弱磁选-二段高梯度强磁选-脱硫浮选-钛浮选方案,工艺简单,精矿指标最好,在原矿Ti O2品位9.78%的情况下,获得了Ti O2品位46.82%,回收率40.84%的钛铁矿精矿,且浮选前再磨后,精矿指标可进一步提高到Ti O2品位47.23%,回收率45.36%。  相似文献   

7.
国外某钒钛磁铁矿中主要有价元素TFe、TiO_2、V_2O_5含量分别达47.20%、18.68%、0.63%。根据钒钛磁铁矿矿物的选矿特性,采用弱磁选选铁-选铁尾矿重选选钛-重选尾矿再用"SLON强磁-浮选"回收细粒钛铁矿的综合回收工艺,获得铁精矿TFe品位60.03%、回收率70.03%;V_2O_5品位1.08%、回收率94.39%;重选钛精矿TiO_2品位48.17%、回收率27.64%;浮选钛精矿TiO_2品位46.64%、回收率16.12%。试验成果为评价该矿产资源综合利用的可行性提供了选矿技术支撑。  相似文献   

8.
针对海南某铁矿山不断开采、矿石品质下降的问题,提出采用铁矿石分质分选的新思路,开展了弱磁选富集磁铁矿、反浮选回收赤铁矿的工艺流程试验。结果表明:原矿经过磨矿(-0.074mm占54.21%)—一段弱磁选(79.58k A/m)—弱磁精矿再磨(-0.045mm占63.82%)—二段弱磁选(79.58k A/m)获得铁品位62.42%、回收率19.28%的弱磁精矿,对一段弱磁尾矿经强磁选获得的强磁精矿与二段弱磁尾矿合并为混磁精矿,混磁精矿再磨至-0.045mm占85.52%,以淀粉为抑制剂、Ca Cl2为调整剂、Ts-2为捕收剂,经1粗1精3扫闭路反浮选,获得铁品位60.60%、回收率36.23%的浮选精矿。弱磁精矿和浮选精矿中铁矿物分别主要以磁铁矿和赤铁矿形式存在,主要脉石矿物皆为石英。  相似文献   

9.
国外某低品位铬铁矿选矿试验研究   总被引:1,自引:0,他引:1  
国外某低品位铬矿石含Cr2 O314.02%,为了合理开发利用该资源,本文以该铬铁矿为研究对象,在试验室采用磁选-重选联合工艺流程进行试验研究。试验结果表明:弱磁-强磁-弱磁精矿再磨摇床重选-强磁精矿分级-摇床重选工艺流程可以获得Cr2 O3品位45.12%,回收率65.08%的指标。  相似文献   

10.
康怀斌  肖国圣 《现代矿业》2023,(9):183-186+198
某选矿厂为了回收利用选铜、锌后尾矿中的铁、硫资源,实现伴生矿产资源的综合开发利用和有价组分的梯级回收,针对选锌尾矿中的磁黄铁矿在选锌过程中被大量石灰抑制可浮性变差的问题,通过在磁场强度175 kA/m的条件下进行弱磁选,弱磁选尾矿经1粗3精1扫浮选流程得到了硫精矿1;弱磁选精矿再磨至-0.038 mm87.50%后,经1粗3精3扫流程获得硫精矿2,两者合并获得了硫品位31.15%、硫回收率81.62%的最终硫精矿;将弱磁精矿浮选后尾矿再进行弱磁选,得到了铁品位64.87%、铁回收率35.09%、含硫4.19%的铁精矿,实现了铁、硫资源的综合回收。  相似文献   

11.
河北某普通磁铁矿TFe品位为65.25%,矿石性质结构简单,具有制备超纯铁精矿的潜力。研究采用多元素及X射线衍射图、物相分析等方法对原矿进行了工艺矿物学研究,并在此基础上对其进行了提纯试验。结果表明,原矿经过弱磁选粗选后,在磨矿细度-0.038 mm占85%的条件下经弱磁选再选、磁选柱精选得到TFe品位为71.31%的磁选柱精矿以及TFe品位68.12%、产率为3.32%的磁选柱铁尾矿。通过进一步考察药剂制度和工艺流程对铁矿精矿品位、回收率等选别指标的影响,确定了合适的药剂制度。而后磁选柱精矿经1粗3精反浮选降硅工艺试验流程,最终可获得含TFe品位71.95%、综合回收率为80.50%的超纯铁精矿,浮选尾矿TFe品位68.17%符合普通铁精矿标准。通过对选别产品进行试样化学成分分析及残余药剂测定,进一步证明该工艺流程可以实现超纯铁精矿的制备。该工艺在抛尾率为10.79%条件下,将原矿样的73.04%转化为超纯铁精矿,对这一地区超纯铁精矿的制备具有重要的指导意义,也为国内其他地区磁铁矿制备超纯铁精矿的研究提供了一定的参考价值。  相似文献   

12.
随着鞍千入选矿石性质的变化,原有的工艺流程暴露出一些问题,如重选精矿品位低、浮选尾矿损失大等。针对鞍千半自磨—湿式预选的混磁铁精矿,进行了详细的工艺矿物学研究,并确定了搅拌磨细磨—磁选—反浮选短流程工艺。研究结果表明,混磁精矿中铁品位为42.91%,主要含铁矿物为磁铁矿和赤铁矿,其他金属矿物为少量黄铁矿,赤铁矿和磁铁矿与脉石矿物结合形成的连生体含量较多,且在细粒级中分布率均较高;在此基础上确定了搅拌磨细磨—弱磁选—弱磁尾矿强磁选—强磁精矿一次粗选一次精选三次扫选的工艺流程,弱磁精矿和反浮选精矿合并得到的综合精矿TFe品位67.68%、回收率91.88%,综合尾矿TFe品位为8.83%。本研究对于鞍山式赤铁矿石流程的优化具有重要的指导意义。  相似文献   

13.
李韦韦 《现代矿业》2020,36(7):111-115
加拿大某钒钛磁铁矿石Fe品位为4256%,TiO2品位为1065%,V2O5品位为033%,Cr2O3品位为122%,矿石中的金属矿物主要为钛磁铁矿和钛铁矿,绝大部分有用元素赋存在钛磁铁矿中。为确定该矿石的开发利用工艺,进行了选矿试验。结果表明:采用两阶段磨矿阶段弱磁选工艺,可获得Fe、TiO2、V2O5、Cr2O3品位分别为5276%、1021%、042%、164%,回收率分别为8714%、6738%、8945%、9391%的铁精矿;弱磁选铁尾矿采用强磁选+重选选钛流程,可获得TiO2品位为4703%的钛精矿,相对弱磁选铁尾矿的回收率为734%。  相似文献   

14.
针对白云鄂博铁精矿杂质含量高的问题,进行分类选矿。以云母型低品位铁-稀土矿石为对象,原矿TFe品位17.48%,主要以磁铁矿和赤铁矿形式存在,且细粒级中分布率较高。通过阶段磨矿-弱磁选回收磁性铁,弱磁尾矿强磁-磨矿-强磁-反浮选回收弱磁性氧化铁工艺,在最佳条件下获得TFe品位为65.49%,产率为20.85%,回收率为66.77%的铁精矿,对该矿石的开发利用具有借鉴意义。  相似文献   

15.
非洲某风化型铌铁磷多金属矿为风化壳复合烧绿石矿,原矿含Nb2O5 0.62%、含P2O5 8.28%,含Fe 13.91%,矿石风化严重,含泥量较高。根据矿石中烧绿石与脉石矿物之间的比重差异,采用重选实现有价矿物的预富集,磁铁矿具有强磁性,采用弱磁选回收磁铁矿,磷灰石和烧绿石具有可浮性差异,浮选实现磷灰石和烧绿石的分离回收。原矿首先经螺旋溜槽重选可以抛除产率为73.61%的尾矿,重选精矿磨细至-0.074 mm占78%,在磁场强度为0.45 T条件下,经弱磁选铁,获得了Fe品位61.69%,回收率38.83%的铁精矿,选铁尾矿以碳酸钠为调整剂、GY10为捕收剂,经1粗2精2扫磷浮选,获得了P2O5品位为37.59%,回收率为47.88%的磷精矿,选磷尾矿以SH为调整剂、GSC为捕收剂,经1粗2精2扫铌浮选,获得了Nb2O5品位37.56%,Nb2O5回收率65.73%的铌精矿。研究结果可以为该类风化铌矿的开发利用提供依据。  相似文献   

16.
云南某低品位难选铁锡矿中铁、锡品位分别为30.91%和0.23%,主要回收矿物为磁铁矿和锡石。为充分回收矿石中的有价组分,依据原矿性质,确定采用磁选选铁—浮选选硫—脱泥—锡石选别(重选+浮选)的工艺流程进行选矿试验研究。原矿经过1粗1精两段磁选可以获得铁品位60.69%、铁回收率78.63%的弱磁精矿。弱磁尾矿经过1粗1精2扫选硫后,选硫尾矿中硫品位降至0.46%,硫精矿锡作业回收率仅为6.88%。将浮硫尾矿筛分为+0.043 mm和-0.043 mm粒级样,+0.043 mm粒级样通过摇床能获得锡品位6.48%、锡作业回收率52.54%的摇床精矿产品; -0.043 mm粒级样经水析脱除-0.01 mm细泥后,以水杨羟肟酸+GZ为锡石捕收剂,2号油为起泡剂,闭路浮选最终可获得锡品位5.69%、锡作业回收率70.23%的锡精矿产品,尾矿中锡品位降至0.12%。全流程试验最终获得铁品位60.69%、铁回收率78.63%的磁铁精矿,锡品位5.92%、锡回收率31.93%的锡精矿,总尾矿中锡品位降至0.14%,实现了该铁锡矿资源的综合回收。  相似文献   

17.
广西某高硫铜矿石中滑石等易浮硅质矿物含量高,现场采用弱磁选-浮铜-浮硫工艺流程进行分选,除弱磁选能较好地回收磁黄铁矿外,黄铜矿浮选和黄铁矿浮选均因易浮硅质矿物的干扰而难以获得合格精矿。为此,在大量探索试验的基础上,采用弱磁选-黄铜矿和硅质矿物混合浮选-混浮精矿铜硅摇床分离-混浮尾矿浮黄铁矿的工艺流程处理该矿石,获得了磁选硫精矿硫品位和回收率分别为38.69%和64.48%,浮选硫精矿硫品位和回收率分别为44.57%和30.99%,铜精矿铜品位和回收率分别为13.87%和63.89%的良好试验指标,有效地综合回收了铜、硫矿物。  相似文献   

18.
为了回收鞍山某浮选尾矿中的铁,进行了详细的工艺矿物学研究和回收工艺研究。结果表明,齐大山铁矿选矿分厂浮选尾矿的品位为19.51%;其中的铁矿物以赤(褐)铁矿和磁铁矿为主,脉石矿物以石英矿为主。最终确定采用螺旋溜槽重选—磁选—反浮选流程,获得的分选技术指标为:最终精矿铁品位为63.50%、产率为15.99%、铁回收率为52.07%。试验研究结果为后期该尾矿资源回收铁提供了技术支撑。   相似文献   

19.
羊拉铜矿尾矿资源二次利用选矿试验研究   总被引:2,自引:1,他引:1  
羊拉铜矿尾矿中含铜0.22%、含铁15.31%,为了能够提高资源的综合利用率,现对该尾矿中的铜、铁进行二次回收利用。尾矿中铜主要以硫化铜矿物为主,铁主要以硅酸铁矿物为主,分布率高达58%,磁铁矿等强磁性矿物含量较低。因此,在保证经济和技术的条件下,试验采用了浮选—磁选联合流程对该尾矿中的铜铁资源进行再回收利用。最终采用浮选流程获得了铜品位为1.43%、回收率为30%左右的较好指标,为后续的工艺提供了原料。再对浮选尾矿进行一段弱磁选,得到铁品位为60.87%,回收率为6.47%的铁精矿产品,为企业增加了额外的经济效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号