首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Barrier Properties and Surface Characteristics of Edible, Bilayer Films   总被引:2,自引:0,他引:2  
Various formulations and methods of fabricating a film consisting of edible hydrocolloids and lipids were investigated. Two formulations consisting of a methylcellulose base layer and a beeswax layer, deposited either from a molten state (Wax-M film) or from an ethanolic solution (Wax-S film), were examined for water vapor permeability (WVP), oxygen permeability and other physical properties. WVP values (g-mil-m?2-day?1-mm Hg?1) for the Wax-M and Wax-S films were 0.5 ± 0.05 and 1.6 ± 0.4, respectively. WVP of the two films did not change significantly after storage for 1 wk at -40°C. Oxygen permeability values (g-cm-cm?2-sec?1-mm Hg?1× 10?12) for the Wax-M and Wax-S films were 0.021 ± 0.002 and 0.007 ± 0.002, respectively. The Wax-M film had a more uniform surface topography than the Wax-S film.  相似文献   

2.
An edible film was prepared from red ginseng residue protein (RGRP) and incorporated with hibiscus extract (HE). RGRP was extracted from red ginseng residue, which is an inexpensive by-product of the red ginseng processing industry. Different concentrations of HE were added to an RGRP film-forming solution as a natural antioxidant. The prepared RGRP films without HE had a tensile strength of 16.9 MPa and an elongation at break of 25.1%. The antioxidant activity of the RGRP film increased with increasing concentration of HE. In addition, the RGRP film with 1% HE exhibited the lowest value of water vapor permeability (1.88×10?9 g·m/m2·s·Pa), which indicates that the film has high water barrier property. The results present the production of edible films from discarded red ginseng residue, and the antioxidant activity of RGRP films as a packaging material can prevent lipid oxidation and quality loss of food products.  相似文献   

3.
Abstract: Agar‐based nanocomposite films with different types of nanoclays, such as Cloisite Na+, Cloisite 30B, and Cloisite 20A, were prepared using a solvent casting method, and their tensile, water vapor barrier, and antimicrobial properties were tested. Tensile strength (TS), elongation at break (E), and water vapor permeability (WVP) of control agar film were 29.7 ± 1.7 MPa, 45.3 ± 9.6%, and (2.22 ± 0.19) × 10?9 g·m/m2·s·Pa, respectively. All the film properties tested, including transmittance, tensile properties, WVP, and X‐ray diffraction patterns, indicated that Cloisite Na+ was the most compatible with agar matrix. TS of the nanocomposite films prepared with 5% Cloisite Na+ increased by 18%, while WVP of the nanocomposite films decreased by 24% through nanoclay compounding. Among the agar/clay nanocomposite films tested, only agar/Cloisite 30B nanocomposite film showed a bacteriostatic function against Listeria monocytogenes.  相似文献   

4.
The effects of acid (acetic, formic, lactic, propionic) concentrations, plasticizer concentrations, and storage time (up to 9 wk) on mechanical properties, water vapor permeability, and oxygen permeability of solution-cast chitosan films were determined. Measured water vapor permeability coefficients ranged from 5.35 to 13.20 × 10?1 g/m·day·atm. Oxygen permeated coefficients ranged from 0.08 to 31.67 × 10?3 cc O2 m·day·atm. Neither property was affected by storage time. Tensile strength (6.85–31.88 Mpa) also was not time dependent, but elongation (14–70%) decreased with storage time. Lactic acid solutions produced the lowest oxygen permeability values, formic acid the highest. Films formed with 7.5% lactic acid solutions had uniquely high values for elongation at break.  相似文献   

5.
Waxy corn starch (amylopectin) and three of its chemical derivatives: acetylated cross‐linked (ACLS), oxidized (OS), and octenyl‐succinylated (OSA), were used together with additives such as Tween 80, sorbitol, and beeswax suspension or safflower oil to test their effect on film‐forming solutions (FFS) and films. The objectives of this study were the starch structure characterization, and its correlation with rheological properties of FFS and solubility, opacity, and water vapor permeability (WVP) of the produced films. Analysis of starch structure, rheological characterization, and films micrographs revealed that the starches contained predominantly low MW amylopectin molecules and film properties depended on their ability to reorganize. Additionally, the interaction among groups introduced in modified starches or with additive molecules can hinder or promote starch reorganization, resulting in films with increased or reduced WVP, solubility and transparency properties. Films were obtained by casting and showed a thickness less than 41 µm. Films prepared with OS and beeswax exhibited the best reorganizing capacity of FFS, resulting in less soluble (30.0 ± 1.6%), highly transparent (23.2 ± 3.3 UA × nm) and less permeable films (0.485 ± 0.016 g · mm · m−2 · h−1 · kPa−1). On the other hand, ACLS showed an opposite trend which was attributed to a more open film structure. These results contribute to understand the molecular interactions of waxy starch molecules in FFS which may be useful to design tailored coatings.  相似文献   

6.
BACKGROUND: Pears are exported in large quantities from South Africa, resulting in large revenues. Minimisation of quality losses once the fruit has reached the export destination is as important as following strict export and distribution protocols. Kafirin can form edible films. In this study an edible coating made from 20 g kg?1 kafirin coating solution was applied as a postharvest treatment to retard quality deterioration of ‘Packham's Triumph’ pears during storage at the typical ripening temperature (20 °C). Changes in physicochemical and sensory quality were monitored over a period of 24 days. RESULTS: The kafirin coating was unable to retard the onset of ripening but decreased the respiration rate and retarded the progression of senescence. However, moisture loss was exacerbated in the kafirin‐coated fruit during ripening at 20 °C, especially towards the end of the shelf‐life. CONCLUSION: The kafirin coating extended the eat‐ripe quality of the pears by 1–2 weeks. However, the appearance of the fruit was unacceptable after 14 days of storage in terms of wrinkled skin. Further work is needed to improve the water barrier properties of the kafirin coating by incorporating a wax or triglyceride into the coating formulation or more simply by applying a kafirin coating to waxed fruit. Copyright © 2011 Society of Chemical Industry  相似文献   

7.
Olive flounder skin gelatin (OSG) was used as a film base material. A bilayer film of OSG and polylactic acid (PLA) was prepared using solvent casting method to enhance the film properties. Physical properties of the OSG–PLA film were increased compared with the nonaugmented OSG film. In particular, the PLA lamination decreased water vapor permeability from 2.17 to 0.92 × 10?9 g·m/m2·s·Pa, as well as of the water solubility from 16.62% to 9.27%, in the bilayer film relative to the OSG film. The oxygen permeability of the OSG–PLA bilayer film was held low by the OSG film, compensating for the high oxygen permeability of the PLA layer. Therefore, the OSG–PLA bilayer film with its enhanced physical properties and high water and oxygen barrier properties can be applied as a food packaging material.  相似文献   

8.
BACKGROUND: An active packaging film based on whey protein isolate (WPI) was developed by incorporating nisin to promote microbial food safety. The effect of temperature and pH on the release of nisin from edible films of different thickness was investigated. The film mechanical properties and inhibitory effect were also evaluated. RESULTS: Nisin release was significantly favoured by low pH, with the highest release after 24 h (1325 IU), which was not significantly affected by temperature (5 or 10 °C). Thickness significantly affected film elongation, with thicker films showing the highest elongation (54.3 ± 2.7%). Water vapour permeability (0.15 ± 0.4 g mm m?2 kPa?1 h?1) and elastic modulus were not significantly affected by thickness. The highest nisin effective diffusivity (5.88 × 10?14 m2 s?1) was obtained using a solution at pH 4, 112 µm film thickness and a temperature of 5 °C. More than four log cycles of Brochotrix thermosphacta were reduced from the surface of a ham sample after 8 days of incubation at 4 °C by the active WPI film containing 473 IU cm?2 nisin. CONCLUSION: Nisin diffusivity from WPI edible films was favoured at lower pH and film thickness. This active packaging film may be used to preserve the quality and safety of meat products. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
以高直链玉米淀粉(HACS)和羟丙基甲基纤维素(HPMC)为主要成膜基材,采用溶液流延法制备了HACS/HPMC可食性膜。研究了不同配比的HACS与HPMC对可食性膜的结晶性能、力学性能、亲水性能和水蒸气阻隔性能等的影响。结果表明,随着HPMC比例的增大,HACS与HPMC之间的氢键作用减弱,复合膜的水溶性增大,连续相由HACS转变为HPMC,但HACS与HPMC的相容性变差。HPMC可有效降低可食性膜的结晶程度并抑制其在储藏过程中的老化。在复合膜中,当HACS与HPMC比例为8∶2时,可食性膜具有最大抗拉强度(7.5 MPa)、断裂伸长率(14.7%)、水接触角(84.33°)和最低水蒸气透过系数(2.17×10~(-10 )g·m·m~(-2)·s~(-1)·Pa~(-1))。纯HACS膜和纯HPMC膜的透光性能均优于HACS/HPMC复合膜。  相似文献   

10.
山梨醇为增塑剂制成小麦面筋蛋白膜特性研究   总被引:1,自引:0,他引:1  
以小麦面筋蛋白(WG)为原料,研究各因素对以山梨醇为增塑剂所制小麦面筋蛋白膜各项性能(通透性、机械性能)影响。基于该课题研究重点,仅以面筋蛋白膜透水率为指标进行正交实验,最终得到最佳成膜条件为:谷朊粉:山梨醇为3.5:1、乙醇浓度50%、反应温度60℃、透水率0.376×10-10g·m-1·S-1·Pa-1。  相似文献   

11.
乳清浓缩蛋白可食用膜成膜工艺的研究   总被引:5,自引:0,他引:5  
研究了乳清浓缩蛋白可食用膜的成膜工艺,分析了蛋白质浓度、甘油浓度和加热温度对可食用膜透水性和透氧性的影响,并确定了可食用膜阻隔性能的优化工艺参数。研究结果表明,可食用膜的阻水性随蛋白质浓度和甘油浓度的增大而下降,阻氧性随甘油浓度增大而下降。加热温度为70℃时,膜的阻水性和阻氧性达到最佳。响应面分析表明,当蛋白质浓度为100 g/L,甘油浓度为27 g/L,加热温度为69℃时,乳清浓缩蛋白可食用膜的综合通透性能为最佳,其透湿系数为0.004 35 g·mm/(m~2·h·kPa),透氧系数为0.134 cm~3·mm/(m~2·min·kPa)。  相似文献   

12.
This study was conducted to extract protein from lentil seed and prepare edible film from the protein and to determine mechanical, optical and barrier properties of lentil protein concentrate (LPC) film. The film was prepared from LPC (5 g/100 ml water) and glycerine (50%, w/w of LPC). Hunter color value (L, a and b), tensile strength, percentage elongation at break (E), puncture strength, water vapor permeability (WVP), moisture content after conditioning at 50% RH and 25 °C for 48 h and total soluble matter after immersion in water, were measured. In regarding to WVP, in spite of difference in film thickness and relative humidity of experiment in different studies, lentil protein film is comparable with other protein films. Characteristics of the lentil protein-based edible films were comparable with other edible protein films. LPC film had more red and less yellow color; it seems that the film had good mechanical properties and water vapor permeability in concomitant with good solubility.  相似文献   

13.
Changes in the muscle proteins of frozen cod fillets, which produce significant amounts of formaldehyde, and frozen haddock fillets, which produce negligible formaldehyde, were compared. Protein extractability and hydrophobicity and the amino acid contents of soluble and insoluble proteins, as well as formaldehyde formation, were investigated in matching pairs of cod and haddock fillets stored at ?10 and ?30 °C (control). Formaldehyde production in cod was much higher (845 and 1065 nmol g?1 at 20 and 30 weeks respectively) than in haddock (93 and 101 nmol g?1 after 20 and 30 weeks respectively) at ?10 °C. However, a rapid decrease in solubility of proteins, increase in hydrophobicity and decrease in the amino acid content of salt‐soluble proteins at ?10 compared with ?30 °C were observed in both species. The results showed that there were no significant differences in the nature of the protein changes between these two species, thus indicating that factors other than formaldehyde were involved in the denaturation of proteins and the formation of aggregates during frozen storage of cod and haddock fillets, especially at ?10 °C. © 2001 Society of Chemical Industry  相似文献   

14.
添加单宁对明胶可食膜性质的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
如何提高明胶膜的机械性能和阻隔性能,一直以来是可食膜研究领域的重要内容。本文以不同剂量(0 mg/g、10 mg/g、20 mg/g、30 mg/g和40 mg/g)单宁添加于明胶液并以浇注法成膜,然后对膜的理化性质进行分析。研究结果发现单宁有效提高了明胶膜的拉伸强度,但降低了其断裂伸长率;当单宁添加量为30 mg/g(明胶干基)时,其拉伸强度最大(22.10 MPa),断裂延伸率最小(40.12%)。与对照膜相比,单宁的添加降低了复合膜水溶性,水蒸气透过率和氧气透过率。在单宁含量添加范围内,水蒸气透过性最低为1.49×10-11 g/(Pa·s·m);水溶性最低为27.76%,氧气透过率最低为21.63 meg/kg。同时,DSC分析表明单宁提高了明胶膜的热稳定性。FT-IR图谱表明单宁与明胶之间发生了以氢键和疏水键为主的物理交联作用。所以,单宁-明胶复合膜在食品包装方面具有潜在的开发价值。  相似文献   

15.
ABSTRACT: The tensile properties, water vapor permeability, oxygen permeability at different relative humidities (RH), and water solubility of edible films made of high-amylose rice starch (RS) or pea starch (PS) were measured and compared with the most commonly used edible films. Photomicrography of starch films shows amylopectin-rich gels and amylose-rich granules. The addition of glycerol into starch films made amylose-rich granules swollen and continuously dispersed between amylopectin-rich gels. Tensile strength of RS and PS films decreased when RH increased from 51% to 90%, whereas elongation-at-break (E) of both films increased when RH increased. Water vapor permeabilities of both films were similar, resulting in 130 to 150 g mm/m2/d /kPa. Oxygen permeability of RS and PS were very low (< 0.5 cm3μm/m2/d/kPa) below 40% RH, and 1.2 to 1.4 at 45% RH. Water solubility of PS film was 32.0%, which is lower than that of RS film (44.4%). Overall high-amylose rice and pea starch films possess an excellent oxygen barrier property with extremely high stretchability.  相似文献   

16.
田少君  张喆 《中国油脂》2012,37(2):19-23
以大豆分离蛋白为原料制得可食性膜,研究在不同低温储藏条件下其功能特性,包括机械性能和阻隔性能的变化。结果显示:随冷藏温度的升高,其功能特性变化较为缓慢。而随冻藏温度的降低,断裂延伸率下降尤为明显,抗拉强度和脂质阻隔能力变化趋势次之,水蒸气透过率升高缓慢。冷藏时间与断裂延伸率呈显著正相关(p<0.05)。冷藏时间与水蒸气透过率和油脂渗透系数均呈极显著正相关(p<0.01)。冻藏时间与水蒸气透过率和油脂渗透系数呈显著正相关(p<0.05)和极显著正相关(p<0.01)。  相似文献   

17.
Abstract: Wine grape pomace (WGP) (cv. Merlot) extract‐based films were studied in terms of their physicochemical, mechanical, water barrier, nutritional, and antibacterial properties. Pomace extract (PE) was obtained by hot water extraction and had a total soluble solid of 3.6% and pH 3.65. Plant‐based polysaccharides, low methoxyl pectin (LMP, 0.75% w/w), sodium alginate (SA, 0.3% w/w), or Ticafilm® (TF, 2% w/w), was added into PE for film formation, respectively. Elongation at break and tensile strength were 23% and 4.04 MPa for TF‐PE film, 25% and 1.12 MPa for SA‐PE film, and 9.89% and 1.56 MPa for LMP‐PE film. Water vapor permeability of LMP‐PE and SA‐PE films was 63 and 60 g mm m?2 d?1 kPa, respectively, lower than that of TF‐PE film (70 g mm m?2 d?1 kPa) (P < 0.05). LMP‐PE film had higher water solubility, indicated by the haze percentage of water after 24 h of film immersion (52.8%) than that of TF‐PE (25.7%) and SA‐PE (15.9%) films, and also had higher amount of released phenolics (96.6%) than that of TF‐PE (93.8%) and SA‐PE (80.5%) films. PE films showed antibacterial activity against both Escherichia coli and Listeria innocua, in which approximate 5‐log reductions in E. coli and 1.7‐ to 3.0‐log reductions in L. innocua were observed at the end of 24 h incubation test compared with control. This study demonstrated the possibility of utilizing WGP extracts as natural, antimicrobial, and antioxidant promoting film‐forming material for various food applications. Practical Application: WGP extract‐based edible films with the addition of a small amount of commercial polysaccharides showed attractive color and comparable mechanical and water barrier properties to other edible films. The films also demonstrated their potential antioxidant and antimicrobial functions. Hence, they may be used as colorful wraps or coatings for food, pharmaceutical, or other similar applications.  相似文献   

18.
Abstract: The effect of the beeswax, Span 20, and glycerol content on qualities of soybean-protein-isolate edible films was evaluated. Beeswax and Span 20 were selected to improve qualities of soybean-protein-isolate films from 11 emulsifiers. The content of beeswax, Span 20, and glycerol was further optimized by response surface analysis. The optimal composite emulsifier was beeswax (1.87% of soybean protein-isolate), Span 20 (10.25% of soybean protein-isolate), and glycerol (29.12% of soybean protein-isolate) with tensile strength of 908 MPa, percentage elongation at break of 25.8%, water vapor permeability of 19.2 g/m·d·MPa, and oxygen permeability of 0 cm3/m·d·MPa. The quality of soybean-protein-isolate films incorporated with the optimal composite emulsifier was 2.34 times higher than that of the control. Furthermore, the disulfide bond content of soybean-protein-isolate films showed a positive correlation with their quality, which provided a simple and rapid way to rank quality of soybean-protein-isolate films. Therefore, our result will not only give an instruction to soybean-protein-isolate-film production, but also give a simple and rapid way to rank film qualities. Practical Application: Our results give the optimal composite emulsifiers for the soybean-protein-isolate-film production. The soybean-protein-isolate films based on the optimal composite emulsifiers show their tensile strength of 908 MPa, percentage elongation at break of 25.8%, water vapor permeability of 19.2 g/m·d·MPa, and oxygen permeability of 0 cm3/m·d·MPa, being stronger than the control. Moreover, our results give a simple and rapid way to rank film qualities, because the disulfide bond content of soybean-protein-isolate films showed a positive correlation with their quality. Hence, the disulfide bond content was an indicator to rank qualities of soybean-protein-isolate films.  相似文献   

19.
《Food chemistry》2005,90(3):401-408
The sorghum prolamin protein, kafirin can be used for making edible films. Several food compatible solvents were examined to identify novel kafirin film casting solvents to replace aqueous ethanol, commonly used for prolamin film casting. Glacial acetic acid and lactic acid were identified as the best primary solvents and 55% (w/w) aqueous isopropanol as a good binary solvent. However, the low volatility of the latter two prevents their use as casting solvents. Films could be cast from glacial acetic acid at 25 °C, a much lower temperature than the 70 °C required with aqueous ethanol. The sensory, tensile, and water barrier properties of the films cast from glacial acetic acid at 25 °C and aqueous ethanol at 70 °C were almost the same. However, the use of glacial acetic acid at 25 °C for casting kafirin films is advantageous as it gave films of more consistent quality.  相似文献   

20.
还原剂影响可食性大豆分离蛋白膜性能的研究   总被引:8,自引:0,他引:8  
研究了还原剂对可食性大豆分离蛋白 (SPI)膜性能的影响。结果表明 ,还原剂可明显提高SPI膜的抗拉强度 (TS) ,降低水蒸气迁移系数 (WVP) ,但伸长率 (E)有所下降。添加还原剂的SPI膜在 pH 7时机械强度和阻隔性最好 ,其中添加半胱氨酸的SPI膜 TS最大 ,为14.4 8MPa ,WVP最小 ,为 4 .6 1g·mm/m2 ·d·kPa  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号