首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
史同心 《机床与液压》2016,(20):133-135
差动液压回路广泛应用于制动系统,尤其是在蓄能器的充液控制下保障了制动压力的稳定。在研究差动液压缸数学模型和蓄能器制动动态数学模型的基础上,对制动过程中油缸有杆腔和无杆腔的压力分布情况进行了仿真和实验研究,得到了一致的结果。研究结果表明:蓄能器充气压力的合理选择对液压系统的制动效果影响很大,应选择在系统工作压力的0.7~0.9倍之间;制动过程中压力出现波动情况,制动效果受无杆腔的制约,这为实际生产中制动系统的控制和选型提供依据。  相似文献   

2.
基于AMESim仿真计算,综合软件中机械元件库、液压元件库及液阻库,建立了矿用液压缸动载加载系统的仿真模型,对动载条件下液压缸无杆腔的压力特性进行模拟分析,进行了液压缸动载过载的现场测试试验并同步监测无杆腔压力波动,仿真计算数据在一定误差范围内与试验数据吻合,验证了文中仿真模型搭建及参数设定的准确性。在此基础上通过修改仿真模型的技术参数,对矿用液压缸在不同工况条件下的动态特性进行仿真计算,对比不同工况下的液压缸无杆腔压力-时间曲线,得出结论:增大液压缸初撑压力以及无杆腔容积有利于增强液压缸的抗冲击能力;动载过载条件下安全阀超调量达到36%,1.2 s后完全泄压;液压缸动载过载冲击试验台蓄能器对液压缸压力特性的影响表现在随着蓄能器容积的增大,初期无杆腔压力峰值明显增大,后增强趋势逐渐放缓,蓄能器容积达到300 L后影响强度基本为0。  相似文献   

3.
张振  王彤  吕峰 《机床与液压》2021,49(11):168-171
针对传统机载导弹弹射装置存在的问题,设计一种以蓄能器提供弹射流量、伺服阀作为核心控制元件的液压弹射机构。论述了液压弹射机构工作原理,利用AMESim软件建立其仿真模型。仿真结果表明:在弹射过程中,蓄能器气体腔容积、液压缸无杆端活塞面积与液压杆伸出速度成正相关,液压缸有杆端活塞面积与液压杆伸出速度成负相关;在缓冲过程中,活塞杆的末速度及缓冲腔压力与凸缘前端与活塞内腔壁间隙成负相关。  相似文献   

4.
张洪督  孙涛 《机床与液压》2014,42(9):145-147
介绍自移式机尾液压调高系统的工作原理,对影响自移式机尾液压调高系统动态性能的因素进行了理论分析。运用AMESim软件对液压调高系统进行建模与仿真,得出液压调高系统活塞速度、位移和液压缸下腔工作压力的动态变化过程,并分析了不同泵流量和液控单向阀阀心直径对调高动态过程的影响,为自移式机尾液压调高系统的优化设计提供一定的参考。  相似文献   

5.
对ZDB-400型断带抓捕器液压控制系统的组成进行了介绍,并利用AMESim仿真软件的图形化建模方法建立了该断带抓捕器液压控制系统的仿真模型,分析了断带前后液压系统的响应情况,绘制出系统压力曲线、液压缸无杆腔压力曲线以及活塞位移曲线,为断带抓捕器性能的优化提供了有价值的参考。  相似文献   

6.
耿晓光  马飞  李叶林 《机床与液压》2015,43(19):180-183
对液压凿岩机双缓冲系统的结构和原理进行了分析。根据实际工作情况,分3个过程进行了研究,首先是系统工作前的平衡状态,由受力平衡方程求得缓冲活塞的位置和缓冲腔压力;进而分析了缓冲活塞制动减速过程,并建立数学模型;最后是缓冲活塞的加速复位过程。借助MATLAB软件,调用ode45函数对各阶段的数学模型进行求解,得到缓冲活塞的位移-时间曲线、速度-时间曲线和一级缓冲腔、二级缓冲腔的压力-时间曲线,从而实现系统整个周期的动态仿真。结果表明:该系统的响应极其迅速,能够很好吸收钎尾的反弹能量,并且保证在下一次冲击活塞撞击钎尾前将钎具压紧于岩底。  相似文献   

7.
朱帅  姚平喜 《机床与液压》2017,45(22):76-78
针对需频繁启动与制动的高速重载液压系统存在的制动冲击和能量损耗问题,提出一种以液压蓄能器为储能元件,通过对液压变压器中变量泵的排量进行合理控制,使液压缸制动腔的压力满足制动要求的能量回收系统。详细介绍了该系统的工作原理和控制过程,对关键元件进行了选型分析,利用AMESim软件对系统进行了仿真,验证了其可行性。仿真结果表明,该系统具有良好的制动效果和较高的能量回收效率。  相似文献   

8.
陈叙  陈奎生 《机床与液压》2019,47(14):54-57
负载独立流量分配(LUDV)因其抗流量饱和及节能广泛应用在液压挖掘机上,但因阀口开启或负载交替变换成为系统最高压力时,会产生一定的液压冲击。针对这一问题,分析LUDV控制原理,并根据LUDV系统以AMESim为平台建立模型,给定交替变化负载信号,对多路阀、补偿阀进出口压力流量特性进行仿真分析。结果表明:建立的模型是正确的;适当增加压力补偿阀弹簧刚度、适当减小补偿阀阀芯最大位移及适当扩大节流口直径可减弱液压冲击,提升系统的稳定性。  相似文献   

9.
无人机液压弹射装置能源系统仿真研究   总被引:1,自引:0,他引:1  
基于功率键合图理论建立了无人机液压弹射装置能源系统的动态数学模型,应用Simulink对其工作过程进行了仿真研究,得到了无人机发射过程中液压系统的压力、流量特性以及液压缸活塞的速度、位移随时间的变化规律,同时给出了同一弹射装置在不同工作压力下发射不同质量无人机时的起飞速度.由于液压缸活塞是通过压缩油液缓冲减速,因此笔者通过改变油液体积弹性模量,分析了打开卸荷阀液压缸活塞的震荡情况,为无人机液压弹射装置的研制及改进提供了参考.  相似文献   

10.
为有效减缓大负载液压缸制动阶段产生的冲击影响,并且有效减少能量损耗,采用液压蓄能器构建重力势能回收系统,通过AMESim仿真平台对动态制动过程和能量回收率进行分析。研究结果表明:在前0.5 s大负载液压缸处于匀速运动,后续系统进入制动并开始回收能量;从1.4 s开始,系统出现泄漏,蓄能器无法继续回收能量,需要利用切断阀将制动回路切断;在切断阀最初产生制动效果时,回油路流量已处于很低的状态,因此缓冲腔并不会受到较大冲击;不同的蓄能器体积并不会引起系统制动状态的变化,可达到基本相同的能量回收率。提高蓄能器初始压力后,在更短时间内可完成制动过程,并且回收的能量基本不变。  相似文献   

11.
液压储能系统在延长路面减速装置使用寿命及提高其能量转换性能等方面有很大作用。给出路面减速液压储能系统的工作原理,建立储能系统的数学模型,利用MATLAB/Simulink软件求解系统数学方程,采用MATLAB/Simulink对该模型进行仿真分析,得到能量转换缸直径、弹簧刚度、弹簧预压缩量、蓄能器气囊初始容积及蓄能器充气压力对液压储能系统性能的影响规律,为路面减速液压储能系统的设计和优化提供了理论基础。  相似文献   

12.
给出船舶靠泊防撞装置及液压缓冲系统,详细阐述其工作原理,对系统元件进行选型,建立船舶撞击防撞装置的系统数学模型,基于Simulink进行系统仿真研究,得到船舶位移速度变化曲线和缓冲油缸工作腔压力流量变化曲线,最后研究溢流阀预压缩量和船舶等效质量对系统缓冲性能的影响。仿真结果表明:溢流阀弹簧预压缩量和船舶等效质量对系统动态性能均有较大影响,弹簧预压缩量增大,船舶位移和缓冲时间均减小,缓冲油缸工作腔压力增大,弹簧预压缩量对工作腔流量没有影响;船舶等效质量增大,船舶位移和缓冲时间均增大,船舶等效质量对缓冲油缸工作腔最大压力和最大流量也没有影响。  相似文献   

13.
设计基于预测控制器的电液伺服系统节能方法,以控制电液伺服系统准确追踪期望位置的同时,达到节能的效果。从电液伺服系统的原理出发,分析电液伺服系统的工作原理及结构组成。利用比例方向控制阀阀芯位移,计算出液压缸腔室与油箱压力及供给压力间的压差值。利用活塞位移求取腔室内的压力连续性方程。在考虑比例方向控制阀阻尼系数的基础上,建立其对应的运动方程。利用比例溢流阀的开度,求取其动态方程。通过腔室压力值、比例溢流阀的开度,建立电液伺服系统的状态模型。以期望位置为依据,计算出腔室内压力的期望值,进而求取所需供给压力。利用所需供给压力,构造预测控制器,对电机的转速进行预测控制,以达到动态调节供给压力的效果,实现节能控制。实验结果表明:与采用滑模控制的恒压方法相比,该方法对正弦及随机期望位置的追踪精度分别提高了44.93%和39.98%,对应的能耗分别降低了13.45%和10.54%。 该方法对电液伺服系统的位置控制效果及节能控制效果都较好  相似文献   

14.
赵海贤 《机床与液压》2016,(20):123-126
立柱是液压支架的重要组成部分,其性能测试需要专门的立柱试验台。针对立柱试验台液压系统中增压回路,建立增压回路的物理模型,仿真其动态特性,得出增压过程中相关关系图,包含增压缸活塞位移与时间的关系图、高压腔压力与时间的关系图、低压腔压力与时间的关系图,还有不同条件下立柱活塞腔压力与时间的关系图。对得到的相关仿真数据进行分析,通过优化增压缸的缸径、油液体积弹性模量等参数,提高增压效率。  相似文献   

15.
研究空气调压阀液压系统状态监测与故障诊断技术,选取液压油油温、液压缸压力、活塞杆位移、伺服阀控制电流、油液污染度等参数作为状态监测参数,基于NI cRIO分布式实时控制系统对监测参数进行实时采集、显示、记录和报警,实现了对整个系统运行状态的实时监测。通过提取和分析液压缸压力、位移信号和伺服阀控制电流信号的综合特征,初步实现了对液压系统关键参数的状态监测和故障的快速诊断与定位。测试结果验证了状态监测和故障诊断技术的有效性和正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号