首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
微博情感研究已成为网络文本分析的重要研究领域,微博情感词典是进行微博情感分类的基础。提出一种在分析海量微博语料情感的过程中,自动构建情感词典的方法。方法自动从语料中获取情感词汇、筛选确定情感新词,使用SO-MB 算法计算新情感词的情感极性及强度,构建微博情感词典,结合规则对中文微博进行无监督情感分类。实验证明提出的微博情感词典的构建方法及微博情感分类方法是有效的。  相似文献   

2.
3.
随着微博在网民中日益火热,社会热点问题容易快速地演变成微博热门话题。由于微博用户多、数据量大、情感复杂的特性,通过情感分析来准确地获取微博潜藏的社会价值、商业价值变得十分迫切。该文通过构建情感词典,查找语义规则,并将情感词典与规则结合,建立微博情感分析模型,实验结果表明本文方法在负向情感判别方面效果优于SVM,并且在微博语料较短时,整体分类效果也优于SVM。  相似文献   

4.
郑诚  杨希  张吉赓 《数字社区&智能家居》2014,(13):3111-3113,3123
随着微博在网民中日益火热,社会热点问题容易快速地演变成微博热门话题。由于微博用户多、数据量大、情感复杂的特性,通过情感分析来准确地获取微博潜藏的社会价值、商业价值变得十分迫切。该文通过构建情感词典,查找语义规则,并将情感词典与规则结合,建立微博情感分析模型,实验结果表明本文方法在负向情感判别方面效果优于SVM,并且在微博语料较短时,整体分类效果也优于SVM。  相似文献   

5.
表情符号作为一种新的网络语言,在微博中被广泛采用,在一定程度上代表了用户的情绪和思想,也将影响微博情感倾向分析的结果。该文提出基于微博统计数据为表情符号构建情感词典的思想,通过对大量微博中与表情"共现"的文本的情感倾向分析,确定表情的情感倾向,以此构建面向情感倾向分析的表情情感词典,旨在为微博乃至其它采用表情符号的Web用户生成信息的情感倾向分析提供支持。进而,该文将表情情感词典反作用于对应的微博文本,重新度量其中情感词的倾向值,改进现有的情感词典,旨在获得更准确的情感倾向分析结果。实验表明了该方法的有效性,并分析了相关阈值的设置对结果的影响。  相似文献   

6.
该文通过借鉴中文及英文情感分析中基于极性词典的方法来对藏文句子文本进行情感分析。首先我们通过人工的方法构建了一个全面、高效的极性词典,包括基础词词典、否定词词典、双重否定词词典、程度副词词典以及转折词词典,将极性词与修饰词组合成极性短语作为极性计算的基本单元,并研究了转折词对句子情感极性的影响,提出了一种基于极性词典的藏语文本句子情感分析方法。实验结果表明,利用该文构建的词典进行的倾向性分析效果良好。  相似文献   

7.
作为仅次于及时通信和搜索引擎的中国互联网网民第三大应用,网络音乐及其应用技术受到业界学者的青睐。音乐作为人类最重要的交流媒介,携带着丰富的情感信息,计算机音乐情感分析更是得到人机情感交互技术领域的高度重视。在基于歌词文本的音乐情感分析过程中,一部合理的音乐领域情感词典,将提供更加细致、更加准确的分析结果。以改进后的Hevner情感环模型为基础,借助HowNet所提供的语义资源和从网络爬取的歌词文本语料库,构建了一部树形层次结构的音乐领域中文情感词典,并利用LRC歌词携带的时间标签获取歌曲的语速信息,实现了基于情感向量空间模型和情感词典的歌词情感分类。实验表明与人工构建的情感词典相比,所构建的情感词典更适用于音乐领域。  相似文献   

8.
中文文本情感词典构建方法   总被引:1,自引:0,他引:1  
互联网海量文本的情感分析是当前的一个研究热点。介绍了一种中文文本情感词典构建方法,该方法选用若干个情感种子词,利用搜索引擎返回的共现数,通过改进的PMI(pointwise mutual information)算法计算情感词的情感权值。将构建的情感词典应用到文本情感分类实验中,在不同的语料环境下,对比基于情感词典和朴素贝叶斯分类器下的文本情感分类效果,实验结果表明,构建的情感词典,可有效用于情感特征选择和直接用于情感分类,并且分类性能稳定。  相似文献   

9.
微博客是近年来自然语言处理领域研究的热点。主要针对中文微博客中的情感分类展开研究。结合网络新词和基础情感词,同时考虑了情感词的极性情感强弱,构建四个词典,分别是基础情感词典、表情符号词典、否定词词典和双重否定词词典;在情感词典的基础上,融合汉语语言学特征和微博情感表达特征,提出一种新的基于极性词典的情感分类方法。实验准确率达到82.2%。实验结果表明,提出的方法可以对中文微博进行较好的情感分类,有一定的应用价值。  相似文献   

10.
文本情感分析是近年来迅速兴起的一个研究课题,具有显著的研究价值和应用价值。情感词典的构建在情感分析任务中发挥着越来越重要的影响力。该文对情感词典构建的研究进展进行了总结。首先重点介绍了情感词典构建的研究现状,将其归纳为四种方法,即基于启发式规则的方法、基于图的方法、基于词对齐模型的方法以及基于表示学习的方法,并对每种方法进行介绍和分析;然后对一些常见的语料库、词典资源以及评测组织进行介绍;最后,对情感词典的构建进行了总结,并对发展趋势进行了展望。
  相似文献   

11.
动态情感知识的获取,特别是领域相关极性词典的构建一直是意见挖掘和情感分析系统在开放应用时面临的主要挑战之一。该文面向产品评价文本提出一种汉语情感极性词典扩展方法。该方法首先采用序列标注方法从意见文本中抽取产品意见要素,同时构建属性-评价对;然后,对抽取的属性-评价对进行正规化,以减少词典扩展中的复杂性和噪声;最后,改进PolarityRank算法的构图方式以使其适用于汉语文本,从而完成词典扩展。在汽车和手机两个领域的意见文本的实验结果表明领域相关的情感极性词语的扩展有利于情感极性分类性能的提高。
  相似文献   

12.
领域情感词典是情感分析最重要的基础。由于产品评论的数量巨大、领域众多,如何自动构建领域情感词典已经成为近年来的一个研究热点。该文提出了一个两阶段的领域情感词典构建算法。第一阶段,利用情感词间的点互信息和上下文约束,使用基于约束的标签传播算法构造基本情感词典;第二阶段,根据情感冲突的频率来识别领域相关情感词,并根据其上下文约束以及修饰的特征完善领域情感词典。实验结果表明,该方法在实际产品评论数据集上取得了较好的效果。
  相似文献   

13.
情感分析已经成为当今自然语言处理领域的热点问题。对于文本的自动化、半监督式的情感分析研究具有广泛的理论和实用价值。基于情感词典的情感倾向分析方法是文本情感分析的一种重要手段。然而,中文词汇在不同领域中的情感倾向不尽相同,一词多义现象明显。同时,不同领域中的情感词也具有专业性、领域性的特点。针对这些问题,本文提出一种基于词向量相似度的半监督情感极性判断算法(Sentiment orientation from word vector,SO-WV),并依据该算法设计出一种跨领域的中文情感词典构建方法。实验证明,本文所设计的情感词典构建方法能有效地对情感词情感倾向进行判断。算法不仅在不同领域的情感词典建立上具有良好的可移植性,同时还具有专业性、领域性的特点。  相似文献   

14.
文本情感分析是目前自然语言处理领域的一个热点研究问题,具有广泛的实用价值和理论研究意义。情感词典构建则是文本情感分析的一项基础任务,即将词语按照情感倾向分为褒义、中性或者贬义。然而,中文情感词典构建存在两个主要问题 1)许多情感词存在多义、歧义的现象,即一个词语在不同语境中它的语义倾向也不尽相同,这给词语的情感计算带来困难;2)由国内外相关研究现状可知,中文情感字典建设的可用资源相对较少。考虑到英文情感分析研究中存在大量语料和词典,该文借助机器翻译系统,结合双语言资源的约束信息,利用标签传播算法(LP)计算词语的情感信息。在四个领域的实验结果显示我们的方法能获得一个分类精度高、覆盖领域语境的中文情感词典。  相似文献   

15.
针对微博情感分类问题,构造了基于三维坐标的模糊量化情感分类算法,通过将情感模糊量化,对微博进行多情感分类。首先对情感模糊处理,将情感分为六大类,根据六大类,定义并计算句子的模糊情感;其次将情感量化处理,根据情感类别构造三维坐标模型,将模糊情感值作为句子的坐标,通过坐标将句子映射到三维坐标模型中,使其量化;最后通过模糊量化处理后,根据与坐标轴的夹角判断句子最终的情感分类。通过实验,对三个作者的微博进行模糊量化处理,对其情感分类,实验结果的F值达到85%以上,同时与三种经典算法进行对比实验,准确率有了明显的提高。
  相似文献   

16.
基于情感词典扩展技术的网络舆情倾向性分析   总被引:7,自引:0,他引:7  
随着Web2.0时代的到来,网络已逐渐成为反映社会舆情的重要载体之一,网络舆情发现及网民的观点和倾向性挖掘也成为新的研究热点,但是目前尚无有效反应网民对热点事件或话题总体态度的舆情分析系统.本文针对网民关于话题评论简单、数目众多的特点,应用HowNet和NTUSD两种资源对现有情感词典进行扩展,建立了一个新的、具有倾向程度的情感词典.基于扩展的情感词典,开发了一个半自动化网络舆情分析系统.该系统能够为用户提供更加细致、准确的评论倾向性分析结果.  相似文献   

17.
一种基于朴素贝叶斯的微博情感分类   总被引:1,自引:0,他引:1  
本文基于二次情感特征提取算法,利用句法依存关系进行一次文本情感特征提取,在此基础上,利用情感词典,进行二次情感特征提取。构建朴素贝叶斯分类器,对采集的热门话题微博和酒店评论进行文本情感倾向性分类。主要比较了表情符号、标点符号,基于情感词典的特征提取和基于二次情感特征提取方法,在不同的组合下的分类性能,寻找更佳的微博文本情感分类预处理方法。并与酒店评论情感分类结果对比、分析,发现影响微博情感分类性能的原因。实验结果表明,二次特征提取方法在分类上取得更高的F1。实验最佳的分类预处理方式是"表情符号+标点符号+二次情感特征提取+BOOL值"。同时发现,朴素贝叶斯在酒店评论情感分类取得更高的分类性能,主要是微博评价对象多样化造成的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号