共查询到20条相似文献,搜索用时 62 毫秒
1.
随着信息技术和数据库技术的飞速发展,从大量的数据中获取有用的信息和知识变得越来越重要。模糊关联规则挖掘是数据挖掘中针对数量型属性关联规则发现的一种有效方法。提出了一种基于矩阵的模糊关联规则挖掘算法,并将其应用于网络安全事件关联分析中,通过对DARPA标准数据集的分析,得出了预期数量的关联规则,并成功验证了某些攻击场景,该模糊关联规则挖掘算法取得了较好的实验结果。 相似文献
2.
通过分析多分类支持向量机(SVM)的特点,建立了基于平衡二叉树的支持向量机模型BBT-SVM,并在训练过程中调整相关参数,得到目标支持向量机.针对PDF文件的特点,应用pdfbox开源库对PDF文件进行解析,去除PDF文件的文件头、交叉引用表以及文件尾等额外的文档描述信息,得到目标信息;最后利用libsvm开源库对PDF格式论文解析后的目标信息进行论文元数据抽取.实验结果表明:各类元数据的查全率都在86%以上,查准率都在92%以上,F度量值都在89%以上,与基于正则表达式的方法相比提高了20%以上,效果较好. 相似文献
3.
4.
一种改进的SVM支持向量分类方法 总被引:1,自引:0,他引:1
提出了一种改进的支持向量分类方法,根据支持向量机中支持向量不会出现在两类样本集间隔以外的正确划分区的理论,通过引入类质心距等概念,从而较好地解决了当两类样本集混淆严重的时候如何更加精确地进行剔除混淆点,保证算法泛化性的问题。实验表明,采用这种改进的算法在两类训练样本集混淆较严重时能较好地解决泛化性问题。 相似文献
5.
在当前的机器学习领域,如何利用支持向量机(SVM)对多类目标进行分类,同时提高分类器的分类效率已经成为研究的热点之一,有效地解决此问题对于提高目标的识别概率具有较大意义。本文针对SVM多分类问题提出了一种基于遗传算法的SVM最优决策树生成算法。算法以随机生成的决策树构建的SVM分类器对同一测试样本的分类正确率作为遗传算法的适应度函数,通过遗传算法寻找到最优决策树,再以最优决策树构建SVM分类器,最终实现SVM的多分类。将该算法应用于低空飞行声目标识别问题,实验结果表明,新方法比传统的1-a-1、1-a-r、SVM-DL和GADT-SVM方法有更高的分类精度和更短的分类时间。 相似文献
6.
徐思婕 《电子技术与软件工程》2020,(24):48-49
本文为提高网络软件缺陷预测的精确度和效率,基于现有的软件缺陷数据集,提出一种基于关联规则的网络软件缺陷预测方法。首先采用随机方法从美国国家航空航天局NASA的软件缺陷数据库中提取用于分类和测试的数据集,利用关联规则方法中Apriori算法对数据集进行关联规则生成和关联分类器的构建,并与BP神经网络方法的预测结果进行对比。结果表明,基于关联规则方法能够在小样本数据集中提高网络软件缺陷预测的精确度和有效性。 相似文献
7.
8.
在人脸识别过程中,基于2DPCA特征提取方法具有直接、高效等特点。但它只包含了二阶统计信息,因而丢失了可能对分类很有用的高阶统计信息而使识别率受到一定影响。SVM采取升维的方法把线性不可分问题转变为线性可分问题,识别率较高,但直接对图像分类时运算量大、运行时间长。文章结合两者的优点,使用了2DPCA和SVM相结合的人脸识别方法,即先利用2DPCA进行特征提取,然后把降维后的数据输入SVM进行分类识别。该方法在ORL、YALE人脸库上的实验表明,不但可以提高识别率,而且所用时间明显减少。 相似文献
9.
白细胞在人体血液中起着至关重要的作用,白细胞的自动分割和识别是计算机图像处理和模式识别在医学图像领域应用的一个重要研究课题.针对各种白细胞的分类识别研究,提出一种实时性、鲁棒性较好的算法.该算法主要利用支持向量机SVM对细胞图像进行分割处理,并与其他两种经典方法进行比较,得出了较好的结果. 相似文献
10.
11.
基于Telnet的隐蔽信道将隐匿的消息直接附加在Telnet的网络数据中,并发送至远程"服务器"。由于键盘操作具有任意性,检测这种信道比较困难。通过分析Telnet隐蔽信道技术,提出针对该隐蔽信道的检测方法。检测方法使用了一分类支持向量机(SVM),抓取用户正常操作的网络数据包作为检测样本,并利用样本数据间的时间间隔构造检测向量。试验表明,利用这种方法对基于Telnet的隐蔽信道进行检测,检测率达到100%,且虚警率较低。 相似文献
12.
近似支持向量机(PSVM)在支持向量机(SVM)的基础上,变不等式约束为等式约束,只需求解一组线性等式,避免了求解二次规划问题,使得算法更快、更简洁,在两类分类问题中取得较好应用.探讨了3种基于两类PSVM的多类分类方法,在标准数据集上进行了验证,并与标准SVM的结果进行了比较,结论表明3种PSVM多类分类方法能取得较好的分类性能. 相似文献
13.
遥感反演的叶面积指数(LAI)时间序列被广泛应用于气候模拟、作物长势监测等研究。但遥感数据受天气等因素影响,时间序列的LAI 数据存在缺失。支持向量机(SVM)是一种有效的数据分类和回归预测工具,而最小二乘支持向量机(LS-SVM)是对SVM 的有效改进。以西藏那曲县为例,使用2003-2011 年MODIS LAI 产品,分别用LS-SVM 和SVM 两种方法对研究区域2011 年LAI 时间序列进行预测,并用MODIS 原始LAI 以及部分地面实验样点值进行验证。结果表明,基于LS-SVM 的LAI 时间序列预测算法的精度比基于SVM 的算法高,从而证明LS-SVM 方法能够弥补遥感反演时间序列LAI 数据的缺失问题,对提高时间序列的LAI 遥感产品质量具有重要意义。 相似文献
14.
P300 Speller是脑-机接口中重要的信息交互方式,由于其诱发的脑电特征信噪比较低与训练样本量庞大等问题,常规的线性识别算法和支持向量机等非线性识别算法难以获得理想的识别效率.本文引入了一种基于权值样本重采样过程的Adaptive Boosting SVM(ABSVM)方法,在大样本集上利用AdaBoost重采样方法建立一系列小样本子集,在其上训练支持向量机并将其集成后进行识别.对6位受试者P300 Speller字符辨识实验的脑电特征识别结果发现,该方法能够显著提高字符识别效率,在合并使用5次重复刺激特征的情况下字符识别准确率达到97.5%.使用国际脑机接口竞赛数据库数据进一步验证,在合并使用5次重复刺激特征的情况下该方法识别正确率较竞赛报告的最优方法提高7.35%,最大信息传输速率的提高达到48.9%.研究结果表明,ABSVM方法能够有效提高P300 Speller的识别效率和信息传输速率,值得进一步研究和发展. 相似文献
15.
16.
一种改进的渐进直推式支持向量机分类学习算法 总被引:1,自引:1,他引:1
基于支持向量机的直推式学习是统计学习理论中一个较新的研究领域。较之传统的归纳式学习方法而言,直推式学习往往更具有普遍性和实际意义。针对渐进直推式支持向量机学习算法存在的缺陷,提出了一种改进算法。该算法利用区域标注法取代前者的成对标注法,在继承了其渐进赋值和动态调整的规则的同时,提高了算法的速度;根据每个无标签样本的标注可信度自适应地对其赋予不同的影响因子,从而控制训练误差的传递和积累,提高了算法的性能。雷达实测数据实验结果表明该算法是有效的。 相似文献
17.
18.
基于最近相关性分类器的单样本掌纹识别 总被引:1,自引:1,他引:0
为了解决单样本掌纹识别的困难,研究了基于最近相关性分类器(NCC)的单样本掌纹识别方法。首先对掌纹图像进行分块,划分为若干个子图像;然后运用统计特征、傅里叶变换、离散余弦变换(DCT)和Gabor变换4种方法对子图像进行特征提取,将所有子图像的特征向量组合在一起形成该图像的特征向量;最后应用NCC进行分类识别。运用PolyU掌纹图像库,对本文算法进行测试。实验结果表明:与最近邻分类器(NNC)和支持向量机(SVM)相比,在不同大小的子图像上,运用不同的特征提取算法,NCC均提高了识别率;分类时间在0.3~0.7s之间,满足实时系统的需求。 相似文献
19.
像元分类是高光谱数据分析的最基本、最重要内容之一,而基于支持向量机(SVM)的分类方法以其高效性得以广泛使用.原始的SVM分类模型中并没有体现出样本、特征、类别对于分类或分析的不同重要性,从而影响了处理效果.为此,将各样本偏离其类中心的距离映射为样本加权系数;将类内散度矩阵应用于特征加权方法;将SVM方程系统中的单位矩阵对角元素加以调整来完成类别加权.不同加权方法既可以单独使用也可以联合使用.实验表明,所提出的加权方法有助于进一步提高高光谱图像的分类效果. 相似文献
20.
论述了基于支持向量机故障诊断技术的基本原理;介绍了传统的基于人工神经网络的故障诊断方法;以旋转机械故障诊断为例对两种诊断方法进行了比较,实验结果表明,与神经网络相比,基于支持向量机的故障诊断方法在训练速度、诊断精度、可靠性等方面都表现出了优越的诊断性能。 相似文献