首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
现代工业产品的生产往往需要多个生产阶段,多阶段生产过程的故障检测成为一个重要问题。多阶段过程数据具有多中心、各工序数据结构不同等特征。针对多阶段过程数据的特征,提出了基于双近邻标准化和主元分析的故障检测方法(DLNS-PCA)。首先寻找样本的双层局部近邻集;其次使用双层局部近邻集的信息标准化样本,得到标准样本;最后在标准样本集上使用主元分析方法进行故障检测。双局部近邻标准化能够将各阶段数据的中心平移到同一点,并且调整各阶段数据的离散程度,使之近似相等,从而将多阶段过程数据融合为服从单一多元高斯分布的数据。进行了青霉素发酵过程故障检测实验,实验结果表明DLNS-PCA方法相对于PCA、KPCA、FDk NN等方法对多阶段过程故障具有更高的检测率。DLNS-PCA方法提高了多阶段过程故障检测能力。  相似文献   

2.
针对工业生产过程故障检测模型不能及时更新的问题,提出了一种特征空间自适应k近邻(featurespace adaptive k-nearest neighbor,FS-AkNN)故障检测方法。首先利用主元分析对训练数据进行降维,构建特征空间,然后利用k最近邻方法建立故障检测模型。在过程监视过程中,提出了基于距离规则的自适应更新故障检测模型。通过一个数值例子和TE过程的仿真实验结果表明了该方法的有效性。  相似文献   

3.
基于PCA混合模型的多工况过程监控   总被引:2,自引:5,他引:2       下载免费PDF全文
许仙珍  谢磊  王树青 《化工学报》2011,62(3):743-752
针对传统多元统计故障检测方法大多假设测量数据服从单一高斯分布的不足,提出了一种基于PCA(principal component analysis)混合模型的多工况过程监测方法。首先通过直接对混合模型的各高斯成分的协方差进行PCA降维变换,使得协方差阵对角化,既减少了运算量又避免了变量相关而导致的奇异性问题;同时采用BYY增量EM算法自动获取混合模型的最佳混合分量数目,避免了常规EM算法的不足。所得的混合模型,除包括均值、协方差和先验概率等参数外,还包括了PCA载荷阵,即对每个混合元建立了PCA模型。然后给出了统计量定义,实现对多工况过程的故障检测。数值例子和TE过程的应用表明,本文提出的方法无需过程先验知识,能自动获取工况数目、精确估计各个工况的统计特性,并更准确及时地检测出多工况过程的各种故障。  相似文献   

4.
为了解决传统主元分析(PCA)故障监测方法中主元选择不合理问题,提出一种基于故障敏感主元的多块PCA故障监测方法。该方法基于正常工况数据集进行PCA分解,得到投影方向与特征值;定义一种故障敏感程度系数作为新的主元排序准则,以选择出每个变量方向上故障监测最敏感的主元;并建立相应的子模型,计算其监测统计量,利用贝叶斯信息准则(BIC)对监测结果进行融合。通过对田纳西伊斯曼(TE)过程和高炉炼铁过程中的应用仿真,结果表明所提方法有效地选取了主元,并且提升了故障监测模型的精度。  相似文献   

5.
针对复杂工业过程数据的动态性、非线性和多阶段性等特征,提出基于时空近邻标准化和KNN规则(Time-Space Nearest Neighborhood Standardization and K Nearest Neighbor Rule,TSNS-KNN)的复杂多阶段过程故障检测方法。首先使用训练样本在时间和空间域上的两层嵌套近邻集的统计信息对样本预处理,然后将标准样本的累积近邻距离作为检测统计量进行故障检测。TSNS-KNN在排除非线性干扰的同时,消除了前后时刻样本间的动态相关性,将多阶段数据转换为单阶段数据,从而实现对复杂多阶段过程的检测。将该方法运用于数值实验和青霉素发酵过程,并与其他方法进行比较,对比结果进一步验证了TSNS-KNN方法的优越性。  相似文献   

6.
针对现代工业过程的非线性和多分布问题,提出一种基于Jarque-Bera test的故障检测方法.首先,对标准化后的原始数据进行Jarque-Bera test,将变量划分为两个部分;其次,对所有的JB统计量做-ln处理,并采用正态置信概率权值进一步划分,从而使原始变量空间划分为正态和非正态分布的两个子空间;再次,在两...  相似文献   

7.
PCA过程监测方法的故障检测行为分析   总被引:21,自引:4,他引:21       下载免费PDF全文
王海清  宋执环  王慧 《化工学报》2002,53(3):297-301
通过分别导出T2 和SPE统计量均值与过程数据统计参数之间的关系 ,分析了影响主元分析 (PCA)检测行为的因素以及工况变化与故障在PCA下的不同被检测行为 ,利用双效蒸发过程的仿真监测验证了获得的结果 ,指出了通常关于PCA检测行为的一些不准确的结论  相似文献   

8.
邓晓刚  张琛琛  王磊 《化工学报》2017,68(5):1961-1968
针对间歇过程的非线性、多阶段特性,提出一种基于多阶段多向核熵成分分析(multistage-MKECA,MsMKECA)的故障检测方法。针对间歇过程的多阶段特性,建立一种时序核熵主元关联度的矩阵相似性阶段划分方法,实现对间歇生产过程的多阶段划分;针对传统批次展开方式在线监控需要预估批次未来值的缺陷,进一步引入一种批次-变量三维数据展开方式建立每个阶段的MKECA非线性统计模型,实现对间歇过程的分阶段监控。最后对盘尼西林发酵过程开展仿真研究,结果表明所提方法能够比传统MKECA方法更为快速地进行故障检测。  相似文献   

9.
基于互信息的分散式动态PCA故障检测方法   总被引:1,自引:4,他引:1       下载免费PDF全文
童楚东  蓝艇  史旭华 《化工学报》2016,67(10):4317-4323
对现代大型复杂动态过程来讲,不同测量变量会存在不同的序列相关性,而且变量间的相互影响会体现在不同的采样时刻上。为此,结合利用分散式建模的优势,提出一种基于互信息的分散式动态过程故障检测方法。该方法在对每个测量变量都引入多个延时测量值后,利用互信息为每个变量区分出与其相关的测量值,并建立起相应的变量子块。这种变量分块方式使每个变量子块都能充分地获取与之相对应的自相关性与交叉相关性信息,较好地处理了数据的动态性问题。然后,利用主元分析(PCA)算法对每一变量子块进行统计建模从而建立起适于大规模动态过程的多模块化的故障检测模型。最后,通过实例验证该方法用于动态过程监测的可行性和有效性。  相似文献   

10.
田学民  蔡连芳 《化工学报》2012,63(9):2859-2863
核独立元分析(kernel independent component analysis,KICA)故障检测方法的故障检测时间易受独立元顺序和主导独立元数目经验选取的影响,针对这个问题,提出基于KICA和高斯混合模型(Gaussian mixture model,GMM)的故障检测方法。采用KICA从正常工况测量数据中提取独立元,用GMM拟合各独立元的概率密度函数,建立基于GMM的监控量及其控制限;计算各独立元的监控量均值,以此判断其非高斯性强弱,对每个强非高斯独立元进行单独监控,对弱非高斯部分采用主元分析法进行监控。在Tennessee Eastman过程上的仿真结果说明,相比于KICA故障检测方法,所提方法不需要排序独立元和选取主导独立元数目,避免了其对故障检测时间的影响,能够有效利用过程信息,缩短故障检测的延迟时间。  相似文献   

11.
一种不等长的多模态间歇过程故障检测方法   总被引:1,自引:2,他引:1       下载免费PDF全文
郭金玉  袁堂明  李元 《化工学报》2016,67(7):2916-2924
提出一种不等长的多模态间歇过程故障检测方法。首先,运用局部加权算法对不等长批次数据进行预处理。在训练样本中确定不等长数据的最大可保留长度,利用k近邻信息,通过加权重构出不等长批次缺失的数据点。其次,对等长的训练集构造局部近邻标准化矩阵,运用K-means算法进行模态聚类,使用局部离群因子方法确定第一控制限,并剔除离群样本。最后,对各个模态建立MPCA模型并确定第二控制限。根据各个模态控制限的匹配系数计算统一的统计量和控制限,在统一的控制限下进行多模态故障检测。将提出方法应用于半导体工业过程,仿真结果表明,与传统的故障检测算法相比,本文算法提高了故障检测率,验证了该方法的有效性。  相似文献   

12.
马贺贺  胡益  侍洪波 《化工学报》2012,63(3):873-880
工业过程往往运行于多个生产模态,针对多模态过程数据的空间分布特点,提出了一种新的基于样本距离空间统计量分析的故障检测方法(DSSA)。首先用每一个样本与其训练集样本中的邻居之间的k个最近邻距离之差来表示该样本,将样本从原始变量空间映射到对应的距离空间中。然后在距离空间中通过移动窗口的方式计算各阶统计量,最后对由各阶统计量组成的统计量样本进行主元分析(PCA)。将DSSA方法、PCA方法以及另一种基于k近邻规则的多模态故障检测方法(FD-kNN)应用于TE过程中,仿真结果表明DSSA方法对多模态故障检测更为有效。  相似文献   

13.
Fault isolation based on data‐driven approaches usually assume the abnormal event data will be formed into a new operating region, measuring the differences between normal and faulty states to identify the faulty variables. In practice, operators intervene in processes when they are aware of abnormalities occurring. The process behavior is nonstationary, whereas the operators are trying to bring it back to normal states. Therefore, the faulty variables have to be located in the first place when the process leaves its normal operating regions. For an industrial process, multiple normal operations are common. On the basis of the assumption that the operating data follow a Gaussian distribution within an operating region, the Gaussian mixture model is employed to extract a series of operating modes from the historical process data. The local statistic T2 and its normalized contribution chart have been derived for detecting abnormalities early and isolating faulty variables in this article. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

14.
蓝艇  童楚东  史旭华 《化工学报》2017,68(8):3177-3182
传统主成分分析(PCA)算法旨在挖掘训练数据各变量间的相关性特征,已在数据驱动的故障检测领域得到了广泛的研究与应用。然而,传统PCA方法在建模过程中通常认为各个测量变量的重要性是一致的,因此不能有效而全面地描述出变量间相关性的差异。为此,提出一种变量加权型PCA(VWPCA)算法并将之应用于故障检测。首先,通过对训练数据进行加权处理,使处理后的数据能够充分体现出变量间相关性的差异。然后,在此基础上建立分布式的PCA故障检测模型。在线实施故障检测时,则通过贝叶斯准则将多组监测结果融合为一组概率指标。VWPCA方法通过相关性大小为各变量赋予不同的权值,从而将相关性差异考虑进了PCA的建模过程中,相应模型对训练数据特征的描述也就更全面。最后,通过在TE过程上的测试验证VWPCA方法用于故障检测的优越性。  相似文献   

15.
16.
钟娜  邓晓刚  徐莹 《化工学报》2015,66(12):4929-4940
针对工业过程监控中的多工况复杂分布数据,提出一种基于局部熵成分分析(LECA)的故障检测方法。为处理数据的多模态分布问题,LECA首先采用KNN-Parzen窗方法估计变量的局部概率密度,进一步构造局部相对概率密度函数降低对窗参数选择的敏感性。为有效挖掘非高斯分布数据中的特征信息,利用信息熵理论计算过程数据的局部信息熵,并采用独立元分析(ICA)方法建立局部熵成分统计模型,实时检测过程故障。在数值例子和连续搅拌反应釜(CSTR)上的仿真结果表明,该方法在故障检测过程中能够获得较好的监控性能。  相似文献   

17.
周乐  宋执环  侯北平  费正顺 《化工学报》2017,68(3):1109-1115
复杂化工过程的观测样本往往包含着测量噪声与少量的离群点数据,而这些受污染的数据会影响数据驱动的过程建模与故障检测方法的准确性。本文考虑了化工过程测量样本的这一实际情况,提出了一种鲁棒半监督PLVR模型(RSSPLVR),并利用核方法将其扩展为非线性的形式(K-RSSPLVR)。此类算法利用基于样本相似度的加权系数作为概率模型的先验参数,能有效消除离群点对建模的影响。利用加权后的建模样本,本文通过EM算法训练了RSSPLVR和K-RSSPLVR的模型参数,并提出了相应的故障检测算法。最后,通过TE过程仿真实验验证了所提出方法的有效性。  相似文献   

18.
In order to detect abnormal events at different scales, a number of multiscale multivariate statistical process control (MSPC) approaches which combine a multivariate linear projection model with multiresolution analysis have been suggested. In this paper, a new nonlinear multiscale-MSPC method is proposed to address multivariate process performance monitoring and in particular fault diagnostics in nonlinear processes. A kernel principal component analysis (KPCA) model, which not only captures nonlinear relationships between variables but also reduces the dimensionality of the data, is built with the reconstructed data obtained by performing wavelet transform and inverse wavelet transform sequentially on measured data. A guideline is given for both off-line and on-line implementations of the approach. Two monitoring statistics used in multiscale KPCA-based process monitoring are used for fault detection. Furthermore, variable contributions to monitoring statistics are also derived by calculating the derivative of the monitoring statistics with respect to the variables. An intensive simulation study on a continuous stirred tank reactor process and a comparison of the proposed approach with several existing methods in terms of false alarm rate, missed alarm rate and detection delay, demonstrate that the proposed method for detecting and identifying faults outperforms current approaches.  相似文献   

19.
卢春红  熊伟丽  顾晓峰 《化工学报》2014,65(12):4866-4874
针对一类非线性多模态的化工过程,提出一种基于概率核主元的混合模型(PKPCAM),并利用贝叶斯推理策略进行过程监控与故障诊断.在提出的模型中, 每个操作模态由一个局部化的概率核主元分量描述,从而构建的一系列分量对应了不同的操作模态.首先,将过程数据从原始的度量空间投影到高维特征空间;其次,在该特征空间建立概率主元混合模型,从概率角度刻画数据集的多个局部分量特征;最后,在提取的核主元分量内获得测试样本的后验概率,结合模态内的马氏距离贡献度,提出基于贝叶斯推理的全局概率指标进行故障检测,同时利用模态内变量的相对贡献度,基于全局贡献度指标进行故障诊断.利用TEP仿真平台,与基于k均值聚类的次级主元分析和核主元分析的方法进行了对比分析,验证了提出的贝叶斯推理的PKPCAM方法对非线性多模态过程进行故障检测与诊断的可行性和有效性.  相似文献   

20.
In batch processes, it is crucial to ensure safe production by fault detection. However, the long batch duration, limited runs, and strong nonlinearity of the data pose challenges. Incipient faults with small amplitudes further complicate the detection process. To achieve safe production, motivated by deep learning strategies, we propose a new fault detection method of batch process called Siamese deep neighbourhood preserving embedding network (SDeNPE). First, the DeNPE network is constructed by means of NPE and kernel functions, which utilizes the different types of kernel functions in the kernel mapping layer to extract diverse deep nonlinear features and overcome strong nonlinearity in the process data. Then, the Siamese network is used to obtain the different features between the data and improve the recognition of incipient faults. In addition, the deep extraction and Siamese network allow for batches of training data reduction without diminishing the performance of fault detection. Finally, we utilize monitoring statistics to complete the fault detection process. Two batch process cases involving the penicillin fermentation process and the semiconductor etching process demonstrate the superior fault detection performance of the proposed SDeNPE over the other comparison methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号