首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 578 毫秒
1.
以氮杂碳包铁(Fe@NC)为载体、聚乙烯吡咯烷酮为稳定剂,通过液相还原H_2PdCl_4和后续焙烧法制备新型的磁可分离Pd/Fe@NC催化剂,并进行AAS、TEM、XRD和XPS表征,将制备的催化剂用于苯甲醇无溶剂需氧氧化反应,考察焙烧温度、反应温度、催化剂用量和碱性助剂对其催化性能的影响,研究催化剂的循环使用性能。结果表明,Pd负载质量分数为4.86%,Pd有效负载比例为97.2%;Pd颗粒在载体上分散均匀,平均粒径为5 nm;催化剂活性物种组成包括Pd~0和含量较低的络合Pd(Ⅱ)及PdO。在无溶剂、无碱性助剂、O_2分压101.325 kPa(O_2流量为20 m L·min~(-1))和低催化剂用量[n(Pd)∶n(苯甲醇)=1∶2 000]条件下,Pd/Fe@NC可高效催化苯甲醇的氧化反应,100℃反应24 h,苯甲醇转化率达86%,苯甲醛选择性为87%,反应过程中无任何有毒物质产生与排放。催化剂循环使用7次后,催化活性略有提高,催化过程中络合的Pd(Ⅱ)向Pd0的转化是其活性提高的主要原因。  相似文献   

2.
以植酸钙(PA-Ca)为载体、H2Pd Cl4为前驱体、甲醇为还原剂,制备了PA-Ca负载Pd的Pd/PA-Ca催化剂,对其进行XRF、BET、SEM、TEM、XRD和XPS表征,并用于苯甲醛氧化制备苯甲酸反应,考察催化剂用量、反应温度和溶剂种类对催化剂催化性能的影响。结果表明,催化剂中负载Pd质量分数为1.03%,钠质量分数为1.05%;合成的PA-Ca载体为晶化程度较低的介孔材料,比表面积为18.85 m~2·g~(-1);催化剂活性物种为Pd0和PdO。在催化剂用量n(苯甲醛)∶n(Pd)=2 000∶1、乙腈作溶剂、O_2压力101.325 k Pa(流速20 m L·min~(-1))、反应温度30℃和反应时间4 h条件下,苯甲醛转化率为83%,苯甲酸选择性为100%;催化剂具有较好的稳定性,可循环使用3~4次。  相似文献   

3.
无定型MnO2的制备及其催化苯甲醇选择氧化性能   总被引:1,自引:0,他引:1  
用KMnO4和MnSO4为原料,通过简单的氧化还原过程合成了无定形MnO2,并用于催化苯甲醇氧化制苯甲醛,发现制得的无定形MnO2在催化苯甲醇氧化制苯甲醛中表现出较高的活性和苯甲醛选择性(100%)。考察了反应温度、氧浓度、催化剂用量以及反应时间对苯甲醇氧化的影响。结果表明,较高的反应温度和氧浓度以及合适的催化剂用量有利于无定形MnO2催化苯甲醇氧化生成苯甲醛,在反应温度110 ℃、常压和通氧条件下反应3 h, 苯甲醇转化率和苯甲醛选择性均为100%。  相似文献   

4.
在三甲基氯硅烷(TMSCl)的催化作用下,2-(苄氨基)苯甲醇与硝基苯甲醛反应合成了1-苄基-2-芳基-3,1-苯并噁嗪类化合物。研究了催化剂种类及用量、反应温度、反应物的物质量之比等因素对反应的影响,获得了较优反应条件。优化条件下反应收率50%。实验结果表明TMSCl比BF_3·OEt_2和SnCl_4对反应的催化活性要好。  相似文献   

5.
以硼杂碳包镍(Ni@BC)为载体,采用乙醇还原前驱体H_2PdCl_4法制备了一种新型磁可分离Pd/Ni@BC催化剂,并对其进行AAS、TEM、XRD和XPS表征,选取苯甲醇需氧氧化为探针反应,考察催化剂用量、反应温度和反应时间对催化性能的影响,研究催化剂对其他芳香醇的催化性能和循环使用性能。AAS结果表明,Pd负载质量分数为9.1%,与理论负载量一致。TEM结果显示,Pd纳米颗粒均匀分散在载体表面,平均粒径为4 nm。XRD和XPS结果均表明,催化剂的活性物种为Pd0。在反应温度80℃、O2_压力101.325 k Pa(流速20 m L·min~(-1))、CH_3CN为溶剂和K_2CO_3为碱性助剂条件下,Pd/Ni@BC对多种芳香醇的氧化反应表现出很高的催化活性和选择性,能将苯甲醇、对甲基苯甲醇、对乙基苯甲醇、对异丙基苯甲醇、肉桂醇、安息香、二苯甲醇以及邻甲基苯甲醇等定量转化为相应的醛或酮。催化剂重复使用5次,苯甲醇转化率由97.3%降至78.9%,Pd的少量脱落和部分氧化是催化剂活性降低的主要原因。  相似文献   

6.
在组合体系“1-乙基-3-甲基咪唑乙酸盐([EMIm][OAc])/O2”作用下,以芳甲醇为原料,经氧化反应,合成了系列芳甲醛(酮)类化合物。通过对条件进行优化,得到适宜反应条件为:芳甲醇与1-乙基-3-甲基咪唑乙酸盐物质的量比为1∶1、O2压力为0.20MPa、温度为130℃、时间为12h。在此条件下,实现了苯甲醛的克级规模制备,得到20种芳甲醛(酮),产率为62%~96%。提出了[EMIm][OAc]通过阴离子作用于苯甲醇,经O2氧化,脱水得到苯甲醛的反应机理。  相似文献   

7.
以活性炭(AC)为载体,采用浸渍法制备Pd/AC催化剂,并利用XRD,BET,SEM,TEM等表征手段对AC和Pd/AC进行表征,结果表明,活性组分Pd在活性炭上分散均匀。研究了Pd/AC为催化剂,常压下对1,4-二氯苯(1,4-DCB)进行催化加氢脱氯。在以甲醇为溶剂,2 m L,12.5 g/L 1,4-二氯苯-甲醇溶液为反应原料,Pd/AC催化剂用量为100 mg,反应温度35℃,反应时间为4 h和常压氢气条件下,1,4-DCB的去除率达到100%,苯收率为100%。Pd/AC催化剂套用5次后活性下降,主要原因为有机物沉积和活性组分Pd团聚。  相似文献   

8.
酸性离子液体中苯甲醇催化氧化合成苯甲醛   总被引:2,自引:0,他引:2  
在没有任何有机溶剂和卤素的条件下,以30%H2O2为氧化剂,Na2WO4·2H2O为催化剂,在酸性离子液体[(CH2)4SO3HMIm]TSO中,研究了苯甲醇选择性氧化合成苯甲醛。在n(苯甲醇)∶n(H2O2)∶n(离子液体)∶n(Na2WO4·2H2O)=40∶48∶1∶1、90 ℃和3 h条件下,催化效果最好,此时苯甲醇转化率为90.1%,苯甲醛选择性为92.1%。反应结束后,产物和离子液体分层,通过简单的倾倒即可分离产物。分离后的离子液体经真空干燥脱水后重复使用4次,催化活性基本不变。  相似文献   

9.
以纳米氧化石墨烯薄片(GO)为基础载体、N,N-二乙基乙二胺(ND)为改性剂,基于酰胺化反应合成GOND并作为稳定Pickering乳液的固体颗粒,以其为Pd负载的载体制备Pd/GOND,将其用于苯甲醇选择氧化制备苯甲醛反应。利用扫描电子显微镜(SEM)、红外光谱(FT-IR)、Zeta电位、X射线光电子能谱仪(XPS)等对GOND进行表征。结果表明,ND的修饰是乳化剂能够在油/水界面稳定吸附的主要原因,当GO/ND质量比为1/4时,材料在pH>7的环境下仍表现出高乳液稳定性。GOND在低质量浓度下(1 mg/mL)即可稳定形成尺寸均匀(140μm)的Pickering乳液。此外,Pd/GOND乳液催化剂可以有效提高苯甲醇的转化率,Pd/GO和Pd/GOND催化苯甲醇的转化率分别为0和76%。  相似文献   

10.
采用离子交换-还原法制备了氧化石墨烯(GO)掺杂锌铝类水滑石负载钯金双金属纳米颗粒的催化剂(Pd Au/Zn-Al LDHs/GO),通过XRD、TEM表征了催化剂的结构,以GO掺杂锌铝类水滑石为载体负载钯金纳米颗粒粒径小(约2nm)且分散均匀。以苯甲醇空气氧化形成苯甲醛的反应为模型,评价催化剂的催化性能,探讨了载体及钯、金比例对催化反应的影响。催化结果表明,氧化石墨烯掺杂的锌铝类水滑石是考察载体中最好的钯、金催化剂的载体,随着钯金比的增加催化剂的催化活性先增加后降低,生成苯甲醛的选择性下降,当钯金比例为1∶1时,催化剂(Pd1Au1/Zn-Al LDHs/GO)的综合催化性能最好,催化活性随反应温度的升高而升高,但选择性随温度的升高而下降。在Pd1Au1/Zn-Al LDHs/GO催化下,80℃反应8h后苯甲醇的转化率可达96%,苯甲醛的选择性为93%,催化剂循环使用4次后仍保持较好的催化性能。  相似文献   

11.
以土豆为碳源,乙二胺为氮源,氢氧化钾为活化剂制备具有微孔结构高比表面积氮掺杂活性炭。通过N_2物理吸附、扫描电镜、透射电镜、拉曼光谱和元素分析研究活性炭比表面积、孔结构、形貌及元素组成,并测试其电化学性能。结果表明,当碱碳质量比为5∶1时(NC600-800-5),活性炭材料比表面积最高2 440 m~2·g~(-1)、孔容最大1.07 cm~3·g~(-1)、孔径最大0.82 nm和1.80 nm。电流密度1 A·g~(-1)时比电容可达370 F·g~(-1),经3 000次循环充放电后,比电容保持率为95.2%。  相似文献   

12.
王欢 《工业催化》2018,26(4):47-50
以钼酸铵为原料,采用高温焙烧法制备颗粒状催化剂前驱体钼酸酐;以氮氢混合气为氮化剂合成氮化钼。考察空速、程序升温速率及氮化终温对氮化钼比表面积的影响,并通过SEM、XRD、BET对纯相氮化钼及前驱体钼酸酐表征。结果表明,一定条件下,当空速为42 000 h-1时,产物的比表面积最大,为129.2 m~2·g~(-1);当升温速率为1.0℃·min-1时,比表面积最大,为135.6 m~2·g~(-1);当氮化终温为750℃时,比表面积达到52.78 m~2·g~(-1)。纯相钼酸酐氮化条件温和、原料成本低。  相似文献   

13.
吴丽威  张静  王长发  宋涛 《工业催化》2019,27(10):82-84
采用容量法分别测量CH4、CO和CO2在5A分子筛上的等温吸附曲线,探究吸附温度和吸附压力对CH4、CO和CO2吸附量的影响。实验结果表明,吸附量随着吸附压力的上升逐渐增大。设定吸附温度在30 ℃、50 ℃和70 ℃时,5A分子筛在30 ℃时对CH4吸附量最大,为13.60 cm3·g-1;对CO和CO2吸附量均在50 ℃时呈现最大值,分别为17.68 cm3·g-1 和94.38 cm3·g-1。而吸附温度70 ℃时,对3种气体的吸附量均减小。  相似文献   

14.
赵波  王卓  叶娜  左树锋 《工业催化》2020,28(4):80-88
以CeO_2修饰多孔NaY分子筛作为载体,采用高温液相还原法制备纳米晶PdO催化剂,用于低浓度苯催化氧化反应。采用XRD、N2吸附-脱附、透射电镜-能谱(HRTEM-EDS)、H2程序升温还原(H_2-TPR)、O_2程序升温脱附(O_2-TPD)和程序升温表面反应(TPSR)等对载体和催化剂进行表征。结果表明,NaY分子筛结构稳定,比表面积651 m~2·g~(-1)和孔容0. 326 cm~3·g~(-1),纳米晶PdO能够较均匀地分散在NaY载体上,颗粒尺寸约(3~5) nm。加入一定量CeO_2后,Pd O以较小的纳米晶颗粒形式分散在CeO_2周围,活性组分与助剂协同作用促进了催化剂中晶格氧的流动性,明显改善了0. 2%Pd/NaY的氧化性能。0. 2%Pd/8%Ce/NaY表现出最佳催化活性和良好稳定性,250℃可完全催化降解1000×10~(-6)的苯,并且230℃连续反应100 h,催化剂转化率稳定在86%。  相似文献   

15.
有序介孔氧化铝具有较大的比表面积、均匀且窄的孔径分布、有序的孔结构等特点,在多相催化反应及吸附分离过程中具有十分重要的应用价值,研究其合成及应用具有重要意义.以廉价的无机铝盐为铝源,结合模板剂,利用溶胶-凝胶法,通过改变模板剂的种类、老化时间和温度等影响因素,制备有序介孔氧化铝.采用多种测试技术对其结构进行表征,探讨不...  相似文献   

16.
以SBA-15为模板剂,采用纳米铸型法制备具有高比表面积的有序介孔钙钛矿型氧化物LaCoO_3催化剂,通过XRD、N2吸附-脱附和H2-TPR等对催化剂进行表征,并与溶胶-凝胶法制备的LaCoO_3催化剂比较,研究其光催化降解亚甲基蓝的性能。结果表明,纳米铸型法制备的立方晶系钙钛矿型LaCoO_3催化剂的比表面积为84 m2·g-1,对100 mg·L-1亚甲基蓝降解率达71.60%,远优于溶胶-凝胶法制备的LaCoO_3催化剂。  相似文献   

17.
采用水热法制备双钙钛矿催化剂Sr_2FeNiO_6,考察不同浓度KOH溶液(4 mol·L~(-1)、6 mol·L~(-1)、8 mol·L~(-1)、10 mol·L~(-1)、12 mol·L~(-1)、14 mol·L~(-1))对催化剂性能的影响,利用X射线衍射、比表面积测定、程序升温还原和扫描电镜等对样品进行性能表征,并以催化甲烷燃烧为目标,考察催化剂催化性能。结果表明,矿化剂KOH浓度对样品性能影响较大,当浓度为10 mol·L~(-1)时,起燃温度最低,T_(10%)为430℃;浓度为8 mol·L~(-1)时,样品比表面积最大,为19.0 m~2·g~(-1),完全燃烧温度最低,T_(90%)为610℃。  相似文献   

18.
Ni/Al_2O_3催化剂是甲烷二氧化碳重整反应制取合成气研究最多、最具应用潜力的一种催化剂。通过对催化剂进行CO_2-TPD研究,考察还原态Ni/Al_2O_3催化剂的CO_2脱附特性。结果表明,浸渍法制备的Ni/Al_2O_3催化剂CO_2脱附曲线呈现双峰,分别在(60~65)℃和(350~380)℃出现高低温两个活性位;高温CO_2吸附量为3.0 cm~3·g~(-1),低温CO_2吸附量为24.0 cm~3·g~(-1)。催化剂的CO_2吸附量与其Ni含量无关。考察选用不同载体的CO_2脱附行为,发现以Al_2O_3为载体的催化剂CO_2吸附量是MgO和SiO_2为载体催化剂的2~4倍,以TiO_2为载体的催化剂几乎不吸附CO_2。  相似文献   

19.
一步法构筑了含4,4’-联吡啶钯骨架微孔聚合物材料催化剂HCP-(Bpy-Pd),通过SEM、IR和XRD等研究Pd引入方式对合成催化剂材料的形貌控制。N2吸附-脱附测试(BET)显示该催化剂具有丰富的微孔结构,比表面积达610.7 m2·g-1。HCP-(Bpy-Pd)催化剂在溴苯Suzuki偶联反应中表现出非常高的活性,80℃反应10 min,联苯产率达到99%,催化剂能够循环使用10次,通过一步法将联吡啶Pd引入催化剂骨架的方法具有重要的潜在应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号