共查询到20条相似文献,搜索用时 15 毫秒
1.
The endoscopy procedure has demonstrated great efficiency in detecting stomach lesions, with extensive numbers of endoscope images produced globally each day. The content‐based gastric image retrieval (CBGIR) system has demonstrated substantial potential in gastric image analysis. Gastric precancerous diseases (GPD) have higher prevalence in gastric cancer patients. Thus, effective intervention is crucial at the GPD stage. In this paper, a CBGIR method is proposed using a modified ResNet‐18 to generate binary hash codes for a rapid and accurate image retrieval process. We tested several popular models (AlexNet, VGGNet and ResNet), with ResNet‐18 determined as the optimum option. Our proposed method was valued using a GPD data set, resulting in a classification accuracy of 96.21 ± 0.66% and a mean average precision of 0.927 ± 0.006 , outperforming other state‐of‐art conventional methods. Furthermore, we constructed a Gastric‐Map (GM) based on feature representations in order to visualize the retrieval results. This work has great auxiliary significance for endoscopists in terms of understanding the typical GPD characteristics and improving aided diagnosis. 相似文献
2.
Lung cancer is a dangerous disease causing death to individuals. Currently precise classification and differential diagnosis of lung cancer is essential with the stability and accuracy of cancer identification is challenging. Classification scheme was developed for lung cancer in CT images by Kernel based Non-Gaussian Convolutional Neural Network (KNG-CNN). KNG-CNN comprises of three convolutional, two fully connected and three pooling layers. Kernel based Non-Gaussian computation is used for the diagnosis of false positive or error encountered in the work. Initially Lung Image Database Consortium image collection (LIDC-IDRI) dataset is used for input images and a ROI based segmentation using efficient CLAHE technique is carried as preprocessing steps, enhancing images for better feature extraction. Morphological features are extracted after the segmentation process. Finally, KNG-CNN method is used for effectual classification of tumour > 30mm. An accuracy of 87.3% was obtained using this technique. This method is effectual for classifying the lung cancer from the CT scanned image. 相似文献
3.
Identifying point defects and other structural anomalies using scanning transmission electron microscopy (STEM) is important to understand a material's properties caused by the disruption of the regular pattern of crystal lattice. Due to improvements in instrumentation stability and electron optics, atomic-resolution images with a field of view of several hundred nanometers can now be routinely acquired at 1–10 Hz frame rates and such data, which often contain thousands of atomic columns, need to be analyzed. To date, image analysis is performed largely manually, but recent developments in computer vision (CV) and machine learning (ML) now enable automated analysis of atomic structures and associated defects. Here, the authors report on how a Convolutional Variational Autoencoder (CVAE) can be utilized to detect structural anomalies in atomic-resolution STEM images. Specifically, the training set is limited to perfect crystal images , and the performance of a CVAE in differentiating between single-crystal bulk data or point defects is demonstrated. It is found that the CVAE can reproduce the perfect crystal data but not the defect input data. The disagreesments between the CVAE-predicted data for defects allows for a clear and automatic distinction and differentiation of several point defect types. 相似文献
4.
针对自动驾驶场景中目标检测存在尺度变化、光照变化和缺少距离信息等问题,提出一种极具鲁棒性的多模态数据融合目标检测方法,其主要思想是利用激光雷达提供的深度信息作为附加的特征来训练卷积神经网络(CNN)。首先利用滑动窗对输入数据进行切分匹配网络输入,然后采用两个CNN特征提取器提取RGB图像和点云深度图的特征,将其级联得到融合后的特征图,送入目标检测网络进行候选框的位置回归与分类,最后进行非极大值抑制(NMS)处理输出检测结果,包含目标的位置、类别、置信度和距离信息。在KITTI数据集上的实验结果表明,本文方法通过多模态数据的优势互补提高了在不同光照场景下的检测鲁棒性,附加滑动窗处理改善了小目标的检测效果。对比其他多种检测方法,本文方法具有检测精度与检测速度上的综合优势。 相似文献
5.
车道线识别是自动驾驶环境感知的一项重要任务。近年来,基于卷积神经网络的深度学习方法在目标检测和场景分割中取得了很好的效果。本文借鉴语义分割的思想,设计了一个基于编码解码结构的轻量级车道线分割网络。针对卷积神经网络计算量大的问题,引入深度可分离卷积来替代普通卷积以减少卷积运算量。此外,提出了一种更高效的卷积结构LaneConv和LaneDeconv来进一步提高计算效率。为了获取更好的车道线特征表示能力,在编码阶段本文引入了一种将空间注意力和通道注意力串联的双注意力机制模块(CBAM)来提高车道线分割精度。在Tusimple车道线数据集上进行了大量实验,结果表明,本文方法能够显著提升车道线的分割速度,且在各种条件下都具有良好的分割效果和鲁棒性。与现有的车道线分割模型相比,本文方法在分割精度方面相似甚至更优,而在速度方面则有明显提升。 相似文献
6.
In recent years, the number of Gun-related incidents has crossed over 250,000 per year and over 85% of the existing 1 billion firearms are in civilian hands, manual monitoring has not proven effective in detecting firearms. which is why an automated weapon detection system is needed. Various automated convolutional neural networks (CNN) weapon detection systems have been proposed in the past to generate good results. However, These techniques have high computation overhead and are slow to provide real-time detection which is essential for the weapon detection system. These models have a high rate of false negatives because they often fail to detect the guns due to the low quality and visibility issues of surveillance videos. This research work aims to minimize the rate of false negatives and false positives in weapon detection while keeping the speed of detection as a key parameter. The proposed framework is based on You Only Look Once (YOLO) and Area of Interest (AOI). Initially, the models take pre-processed frames where the background is removed by the use of the Gaussian blur algorithm. The proposed architecture will be assessed through various performance parameters such as False Negative, False Positive, precision, recall rate, and F1 score. The results of this research work make it clear that due to YOLO-v5s high recall rate and speed of detection are achieved. Speed reached 0.010 s per frame compared to the 0.17 s of the Faster R-CNN. It is promising to be used in the field of security and weapon detection. 相似文献
7.
Calculating the semantic similarity of two sentences is an extremely challenging problem. We propose a solution based on convolutional neural networks (CNN) using semantic and syntactic features of sentences. The similarity score between two sentences is computed as follows. First, given a sentence, two matrices are constructed accordingly, which are called the syntax model input matrix and the semantic model input matrix; one records some syntax features, and the other records some semantic features. By experimenting with different arrangements of representing thesyntactic and semantic features of the sentences in the matrices, we adopt the most effective way of constructing the matrices. Second, these two matrices are given to two neural networks, which are called the sentence model and the semantic model, respectively. The convolution process of the neural networks of the two models is carried out in multiple perspectives. The outputs of the two models are combined as a vector, which is the representation of the sentence. Third, given the representation vectors of two sentences, the similarity score of these representations is computed by a layer in the CNN. Experiment results show that our algorithm (SSCNN) surpasses the performance MPCPP, which noticeably the best recent work of using CNN for sentence similarity computation. Comparing with MPCNN, the convolution computation in SSCNN is considerably simpler. Based on the results of this work, we suggest that by further utilization of semantic and syntactic features, the performance of sentence similarity measurements has considerable potentials to be improved in the future. 相似文献
8.
In the current state of the art of process industries/manufacturing technologies, computer-instrumented and computer-controlled autonomous techniques are necessary for damage diagnosis and prognosis in operating machinery. From this perspective, the paper addresses the issue of fatigue damage that is one of the most encountered sources of degradation in polycrystalline-alloy structures of machinery components. In this paper, the convolutional neural networks (CNNs) are applied to synergistic combinations of ultrasonic measurements and images from a confocal microscope (Alicona) to detect and evaluate the risk of fatigue damage. The database of the Alicona has been used to calibrate the ultrasonic database and to provide the ground truth for fatigue damage assessment. The results show that both the ultrasonic data and Alicona images are capable of classifying the fatigue damage into their respective classes with considerably high accuracy. However, the ultrasonic CNN model yields better accuracy than the Alicona CNN model by almost 9%. 相似文献
9.
吊弦是高铁接触网系统的主要部件,容易发生断裂和松弛,直接威胁行车安全.在脉动风和受电弓同时作用下,安装于承力索和接触线上的加速度传感器所获取的加速度信号特征比较明显,应用LSTM网络模型,吊弦断裂和松弛故障容易检测.本文针对仅脉动风作用下,加速度信号特征微弱,吊弦故障难以检测问题,利用卷积神经网络强大的特征提取能力和循环神经网络的时序表达能力,同时引进注意力机制,建立CNN-LSTM和CNN-LSTM-Attention融合网络模型,并在网络训练过程中使用贝叶斯优化方法进行超参数选择.实验结果表明,相比LSTM模型,融合网络模型大大提高了吊弦故障检测的准确率,具有很强的实用性. 相似文献
10.
Artificial neural network (ANN)‐based methods have been extensively investigated for equipment health condition prediction. However, effective condition‐based maintenance (CBM) optimization methods utilizing ANN prediction information are currently not available due to two key challenges: (i) ANN prediction models typically only give a single remaining life prediction value, and it is hard to quantify the uncertainty associated with the predicted value; (ii) simulation methods are generally used for evaluating the cost of the CBM policies, while more accurate and efficient numerical methods are not available, which is critical for performing CBM optimization. In this paper, we propose a CBM optimization approach based on ANN remaining life prediction information, in which the above‐mentioned key challenges are addressed. The CBM policy is defined by a failure probability threshold value. The remaining life prediction uncertainty is estimated based on ANN lifetime prediction errors on the test set during the ANN training and testing processes. A numerical method is developed to evaluate the cost of the proposed CBM policy more accurately and efficiently. Optimization can be performed to find the optimal failure probability threshold value corresponding to the lowest maintenance cost. The effectiveness of the proposed CBM approach is demonstrated using two simulated degradation data sets and a real‐world condition monitoring data set collected from pump bearings. The proposed approach is also compared with benchmark maintenance policies and is found to outperform the benchmark policies. The proposed CBM approach can also be adapted to utilize information obtained using other prognostics methods. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
11.
The increasing capabilities of Artificial Intelligence (AI), has led researchers and visionaries to think in the direction of machines outperforming humans by gaining intelligence equal to or greater than humans, which may not always have a positive impact on the society. AI gone rogue, and Technological Singularity are major concerns in academia as well as the industry. It is necessary to identify the limitations of machines and analyze their incompetence, which could draw a line between human and machine intelligence. Internet memes are an amalgam of pictures, videos, underlying messages, ideas, sentiments, humor, and experiences, hence the way an internet meme is perceived by a human may not be entirely how a machine comprehends it. In this paper, we present experimental evidence on how comprehending Internet Memes is a challenge for AI. We use a combination of Optical Character Recognition techniques like Tesseract, Pixel Link, and East Detector to extract text from the memes, and machine learning algorithms like Convolutional Neural Networks (CNN), Region-based Convolutional Neural Networks (RCNN), and Transfer Learning with pre-trained denseNet for assessing the textual and facial emotions combined. We evaluate the performance using Sensitivity and Specificity. Our results show that comprehending memes is indeed a challenging task, and hence a major limitation of AI. This research would be of utmost interest to researchers working in the areas of Artificial General Intelligence and Technological Singularity. 相似文献
12.
In order to effectively detect the privacy that may be leaked through socialnetworks and avoid unnecessary harm to users, this paper takes microblog as the researchobject to study the detection of privacy disclosure in social networks. First, we performfast privacy leak detection on the currently published text based on the fastText model. Inthe case that the text to be published contains certain private information, we fullyconsider the aggregation effect of the private information leaked by different channels,and establish a convolution neural network model based on multi-dimensional features(MF-CNN) to detect privacy disclosure comprehensively and accurately. Theexperimental results show that the proposed method has a higher accuracy of privacydisclosure detection and can meet the real-time requirements of detection. 相似文献
13.
In recent years, deep neural networks have become a fascinating and influential research subject, and they play a critical role in video processing and analytics. Since, video analytics are predominantly hardware centric, exploration of implementing the deep neural networks in the hardware needs its brighter light of research. However, the computational complexity and resource constraints of deep neural networks are increasing exponentially by time. Convolutional neural networks are one of the most popular deep learning architecture especially for image classification and video analytics. But these algorithms need an efficient implement strategy for incorporating more real time computations in terms of handling the videos in the hardware. Field programmable Gate arrays (FPGA) is thought to be more advantageous in implementing the convolutional neural networks when compared to Graphics Processing Unit (GPU) in terms of energy efficient and low computational complexity. But still, an intelligent architecture is required for implementing the CNN in FPGA for processing the videos. This paper introduces a modern high-performance, energy-efficient Bat Pruned Ensembled Convolutional networks (BPEC-CNN) for processing the video in the hardware. The system integrates the Bat Evolutionary Pruned layers for CNN and implements the new shared Distributed Filtering Structures (DFS) for handing the filter layers in CNN with pipelined data-path in FPGA. In addition, the proposed system adopts the hardware-software co-design methodology for an energy efficiency and less computational complexity. The extensive experimentations are carried out using CASIA video datasets with ARTIX-7 FPGA boards (number) and various algorithms centric parameters such as accuracy, sensitivity, specificity and architecture centric parameters such as the power, area and throughput are analyzed. These results are then compared with the existing pruned CNN architectures such as CNN-Prunner in which the proposed architecture has been shown 25% better performance than the existing architectures. 相似文献
14.
Artificial scent screening systems (known as electronic noses, E-noses) have been researched extensively. A portable, automatic, and accurate, real-time E-nose requires both robust cross-reactive sensing and fingerprint pattern recognition. Few E-noses have been commercialized because they suffer from either sensing or pattern-recognition issues. Here, cross-reactive colorimetric barcode combinatorics and deep convolutional neural networks (DCNNs) are combined to form a system for monitoring meat freshness that concurrently provides scent fingerprint and fingerprint recognition. The barcodes—comprising 20 different types of porous nanocomposites of chitosan, dye, and cellulose acetate—form scent fingerprints that are identifiable by DCNN. A fully supervised DCNN trained using 3475 labeled barcode images predicts meat freshness with an overall accuracy of 98.5%. Incorporating DCNN into a smartphone application forms a simple platform for rapid barcode scanning and identification of food freshness in real time. The system is fast, accurate, and non-destructive, enabling consumers and all stakeholders in the food supply chain to monitor food freshness. 相似文献
15.
We show that deep convolutional neural networks (CNNs) can massively outperform traditional densely connected neural networks (NNs) (both deep or shallow) in predicting eigenvalue problems in mechanics. In this sense, we strike out in a new direction in mechanics computations with strongly predictive NNs whose success depends not only on architectures being deep but also being fundamentally different from the widely used to date. We consider a model problem: predicting the eigenvalues of one-dimensional (1D) and two-dimensional (2D) phononic crystals. For the 1D case, the optimal CNN architecture reaches 98% accuracy level on unseen data when trained with just 20 000 samples, compared to 85% accuracy even with 100 000 samples for the typical network of choice in mechanics research. We show that, with relatively high data efficiency, CNNs have the capability to generalize well and automatically learn deep symmetry operations, easily extending to higher dimensions and our 2D case. Most importantly, we show how CNNs can naturally represent mechanical material tensors, with its convolution kernels serving as local receptive fields, which is a natural representation of mechanical response. Strategies proposed are applicable to other mechanics' problems and may, in the future, be used to sidestep cumbersome algorithms with purely data-driven approaches based upon modern deep architectures. 相似文献
16.
Recently years, convolutional neural networks (CNNs) have proven to be powerful tools for a broad range of computer vision tasks. However, training a CNN from scratch is difficult because it requires a large amount of labeled training data, which remains a challenge in medical imaging domain. To this end, deep transfer learning (TL) technique is widely used for many medical image tasks. In this paper, we propose a novel multisource transfer learning CNN model for lymph node detection. The mechanism behind it is straightforward. Point-wise (1 × 1) convolution is used to fuse multisource transfer learning knowledge. Concretely, we view the transferred features as priori domain knowledge and 1 × 1 convolutional operation is implemented after pre-trained convolution layers to adaptively combine the transfer information for target task. In order to learn non-linear transferred features and prevent over-fitting, we present an encode process for the pre-trained convolution kernels. At last, based on convolutional factorization technique, we train the proposed CNN model and the encoder process jointly, which improves the feasibility of our approach. The effectiveness of the proposed method is verified on lymph node (LN) dataset: 388 mediastinal LNs labeled by radiologists in 90 patient CT scans, and 595 abdominal LNs in 86 patient CT scans for LN detection. Our method demonstrates sensitivities of about 85%/71% at 3 FP/vol. and 92%/85% at 6 FP/vol. for mediastinum and abdomen respectively, which compares favorably to previous methods. 相似文献
17.
In clinical diagnosis and surgical planning, extracting brain tumors from magnetic resonance images (MRI) is very important. Nevertheless, considering the high variability and imbalance of the brain tumor datasets, the way of designing a deep neural network for accurately segmenting the brain tumor still challenges the researchers. Moreover, as the number of convolutional layers increases, the deep feature maps cannot provide fine-grained spatial information, and this feature information is useful for segmenting brain tumors from the MRI. Aiming to solve this problem, a brain tumor segmenting method of residual multilevel and multiscale framework (Res-MulFra) is proposed in this article. In the proposed framework, the multilevel is realized by stacking the proposed RMFM-based segmentation network (RMFMSegNet), which is mainly used to leverage the prior knowledge to gain a better brain tumor segmentation performance. The multiscale is implemented by the proposed RMFMSegNet, which includes both the parallel multibranch structure and the serial multibranch structure, and is mainly designed for obtaining the multiscale feature information. Moreover, from various receptive fields, a residual multiscale feature fusion module (RMFM) is also proposed to effectively combine the contextual feature information. Furthermore, in order to gain a better brain tumor segmentation performance, the channel attention module is also adopted. Through assessing the devised framework on the BraTS dataset and comparing it with other advanced methods, the effectiveness of the Res-MulFra is verified by the extensive experimental results. For the BraTS2015 testing dataset, the Dice value of the proposed method is 0.85 for the complete area, 0.72 for the core area, and 0.62 for the enhanced area. 相似文献
18.
目的研究无需进行复杂的图像预处理和人工特征提取,就能提高光学遥感图像的船只检测准确率和实现船只类型精细分类。方法对输入的检测图像,采用选择性搜索的方法产生船只候选区域,用已经标记好的训练样本对卷积神经网络进行监督训练,得到网络参数,然后使用经过监督训练的卷积神经网络提取抽象特征,并对候选区域进行分类,根据船只候选区域的分类概率同时确定船只的位置以及类型。结果与现有的2种检测方法进行对比,实验结果表明卷积神经网络能有效提高船只检测准确率,平均检测准确率达到了93.3%。结论该检测方法无需进行复杂的预处理,能同时对船只进行检测和分类,并能有效提高船只检测准确率。 相似文献
19.
路面裂缝检测是道路运营和维护的一项重要工作,由于裂缝没有固定形状而且纹理特征受光照影响大,基于图像的精确裂缝检测是一项巨大的挑战。本文针对裂缝图像的特点,提出了一种U型结构的卷积神经网络UCrackNet。首先在跳跃连接中加入Dropout层来提高网络的泛化能力;其次,针对上采样中容易产生边缘轮廓失真的问题,采用池化索引对图像边界特征进行高保真恢复;最后,为了更好地提取局部细节和全局上下文信息,采用不同扩张系数的空洞卷积密集连接来实现感受野的均衡,同时嵌入多层输出融合来进一步提升模型的检测精度。在公开的道路裂缝数据集CrackTree206和AIMCrack上测试表明,该算法能有效地检测出路面裂缝,并且具有一定的鲁棒性。 相似文献
20.
将功率谱和神经网络相结合,应用于高海况、低信噪比条件下,水中目标信号的特征提取中.文中首先对信号进行功率谱估计,利用目标信号功率主要集中在低频部分的特点,提取低频信号的能量作为特征,然后利用人工神经网络对目标信号进行检测.利用不同浪级情况下海洋水压场的仿真信号数据,对某型目标舰船的水压信号进行了检测计算,验证了该方法的有效性,尤其是达到了在高海况、低信噪比条件下,对目标信号检测率比较高、虚警率比较低的效果. 相似文献
|