首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The novel coronavirus disease (SARS‐CoV‐2 or COVID‐19) is spreading across the world and is affecting public health and the world economy. Artificial Intelligence (AI) can play a key role in enhancing COVID‐19 detection. However, lung infection by COVID‐19 is not quantifiable due to a lack of studies and the difficulty involved in the collection of large datasets. Segmentation is a preferred technique to quantify and contour the COVID‐19 region on the lungs using computed tomography (CT) scan images. To address the dataset problem, we propose a deep neural network (DNN) model trained on a limited dataset where features are selected using a region‐specific approach. Specifically, we apply the Zernike moment (ZM) and gray level co‐occurrence matrix (GLCM) to extract the unique shape and texture features. The feature vectors computed from these techniques enable segmentation that illustrates the severity of the COVID‐19 infection. The proposed algorithm was compared with other existing state‐of‐the‐art deep neural networks using the Radiopedia and COVID‐19 CT Segmentation datasets presented specificity, sensitivity, sensitivity, mean absolute error (MAE), enhance‐alignment measure (EMφ), and structure measure (Sm) of 0.942, 0.701, 0.082, 0.867, and 0.783, respectively. The metrics demonstrate the performance of the model in quantifying the COVID‐19 infection with limited datasets.  相似文献   

2.
The coronavirus disease (COVID‐19) pandemic has led to a devastating effect on the global public health. Computed Tomography (CT) is an effective tool in the screening of COVID‐19. It is of great importance to rapidly and accurately segment COVID‐19 from CT to help diagnostic and patient monitoring. In this paper, we propose a U‐Net based segmentation network using attention mechanism. As not all the features extracted from the encoders are useful for segmentation, we propose to incorporate an attention mechanism including a spatial attention module and a channel attention module, to a U‐Net architecture to re‐weight the feature representation spatially and channel‐wise to capture rich contextual relationships for better feature representation. In addition, the focal Tversky loss is introduced to deal with small lesion segmentation. The experiment results, evaluated on a COVID‐19 CT segmentation dataset where 473 CT slices are available, demonstrate the proposed method can achieve an accurate and rapid segmentation result on COVID‐19. The method takes only 0.29 second to segment a single CT slice. The obtained Dice Score and Hausdorff Distance are 83.1% and 18.8, respectively.  相似文献   

3.
4.
Necessary screenings must be performed to control the spread of the COVID‐19 in daily life and to make a preliminary diagnosis of suspicious cases. The long duration of pathological laboratory tests and the suspicious test results led the researchers to focus on different fields. Fast and accurate diagnoses are essential for effective interventions for COVID‐19. The information obtained by using X‐ray and Computed Tomography (CT) images is vital in making clinical diagnoses. Therefore it is aimed to develop a machine learning method for the detection of viral epidemics by analyzing X‐ray and CT images. In this study, images belonging to six situations, including coronavirus images, are classified using a two‐stage data enhancement approach. Since the number of images in the dataset is deficient and unbalanced, a shallow image augmentation approach was used in the first phase. It is more convenient to analyze these images with hand‐crafted feature extraction methods because the dataset newly created is still insufficient to train a deep architecture. Therefore, the Synthetic minority over‐sampling technique algorithm is the second data enhancement step of this study. Finally, the feature vector is reduced in size by using a stacked auto‐encoder and principal component analysis methods to remove interconnected features in the feature vector. According to the obtained results, it is seen that the proposed method has leveraging performance, especially to make the diagnosis of COVID‐19 in a short time and effectively. Also, it is thought to be a source of inspiration for future studies for deficient and unbalanced datasets.  相似文献   

5.
With the increasing and rapid growth rate of COVID-19 cases, the healthcare scheme of several developed countries have reached the point of collapse. An important and critical steps in fighting against COVID-19 is powerful screening of diseased patients, in such a way that positive patient can be treated and isolated. A chest radiology image-based diagnosis scheme might have several benefits over traditional approach. The accomplishment of artificial intelligence (AI) based techniques in automated diagnoses in the healthcare sector and rapid increase in COVID-19 cases have demanded the requirement of AI based automated diagnosis and recognition systems. This study develops an Intelligent Firefly Algorithm Deep Transfer Learning Based COVID-19 Monitoring System (IFFA-DTLMS). The proposed IFFA-DTLMS model majorly aims at identifying and categorizing the occurrence of COVID19 on chest radiographs. To attain this, the presented IFFA-DTLMS model primarily applies densely connected networks (DenseNet121) model to generate a collection of feature vectors. In addition, the firefly algorithm (FFA) is applied for the hyper parameter optimization of DenseNet121 model. Moreover, autoencoder-long short term memory (AE-LSTM) model is exploited for the classification and identification of COVID19. For ensuring the enhanced performance of the IFFA-DTLMS model, a wide-ranging experiments were performed and the results are reviewed under distinctive aspects. The experimental value reports the betterment of IFFA-DTLMS model over recent approaches.  相似文献   

6.
This study is designed to develop Artificial Intelligence (AI) based analysis tool that could accurately detect COVID-19 lung infections based on portable chest x-rays (CXRs). The frontline physicians and radiologists suffer from grand challenges for COVID-19 pandemic due to the suboptimal image quality and the large volume of CXRs. In this study, AI-based analysis tools were developed that can precisely classify COVID-19 lung infection. Publicly available datasets of COVID-19 (N = 1525), non-COVID-19 normal (N = 1525), viral pneumonia (N = 1342) and bacterial pneumonia (N = 2521) from the Italian Society of Medical and Interventional Radiology (SIRM), Radiopaedia, The Cancer Imaging Archive (TCIA) and Kaggle repositories were taken. A multi-approach utilizing deep learning ResNet101 with and without hyperparameters optimization was employed. Additionally, the features extracted from the average pooling layer of ResNet101 were used as input to machine learning (ML) algorithms, which twice trained the learning algorithms. The ResNet101 with optimized parameters yielded improved performance to default parameters. The extracted features from ResNet101 are fed to the k-nearest neighbor (KNN) and support vector machine (SVM) yielded the highest 3-class classification performance of 99.86% and 99.46%, respectively. The results indicate that the proposed approach can be better utilized for improving the accuracy and diagnostic efficiency of CXRs. The proposed deep learning model has the potential to improve further the efficiency of the healthcare systems for proper diagnosis and prognosis of COVID-19 lung infection.  相似文献   

7.
8.
In the present paper, our model consists of deep learning approach: DenseNet201 for detection of COVID and Pneumonia using the Chest X-ray Images. The model is a framework consisting of the modeling software which assists in Health Insurance Portability and Accountability Act Compliance which protects and secures the Protected Health Information . The need of the proposed framework in medical facilities shall give the feedback to the radiologist for detecting COVID and pneumonia though the transfer learning methods. A Graphical User Interface tool allows the technician to upload the chest X-ray Image. The software then uploads chest X-ray radiograph (CXR) to the developed detection model for the detection. Once the radiographs are processed, the radiologist shall receive the Classification of the disease which further aids them to verify the similar CXR Images and draw the conclusion. Our model consists of the dataset from Kaggle and if we observe the results, we get an accuracy of 99.1%, sensitivity of 98.5%, and specificity of 98.95%. The proposed Bio-Medical Innovation is a user-ready framework which assists the medical providers in providing the patients with the best-suited medication regimen by looking into the previous CXR Images and confirming the results. There is a motivation to design more such applications for Medical Image Analysis in the future to serve the community and improve the patient care.  相似文献   

9.
The exponential increase in new coronavirus disease 2019 ({COVID-19}) cases and deaths has made COVID-19 the leading cause of death in many countries. Thus, in this study, we propose an efficient technique for the automatic detection of COVID-19 and pneumonia based on X-ray images. A stacked denoising convolutional autoencoder (SDCA) model was proposed to classify X-ray images into three classes: normal, pneumonia, and {COVID-19}. The SDCA model was used to obtain a good representation of the input data and extract the relevant features from noisy images. The proposed model’s architecture mainly composed of eight autoencoders, which were fed to two dense layers and SoftMax classifiers. The proposed model was evaluated with 6356 images from the datasets from different sources. The experiments and evaluation of the proposed model were applied to an 80/20 training/validation split and for five cross-validation data splitting, respectively. The metrics used for the SDCA model were the classification accuracy, precision, sensitivity, and specificity for both schemes. Our results demonstrated the superiority of the proposed model in classifying X-ray images with high accuracy of 96.8%. Therefore, this model can help physicians accelerate COVID-19 diagnosis.  相似文献   

10.
A computer‐aided diagnosis (CAD) system has been developed for the detection of bronchiectasis from computed tomography (CT) images of chest. A set of CT images of the chest with known diagnosis were collected and these images were first denoised using Wiener filter. The lung tissue was then segmented using optimal thresholding. The Pathology Bearing Regions (PBRs) were then extracted by applying pixel‐based segmentation. For each PBR, a gray level co‐occurrence matrix (GLCM) was constructed. From the GLCM texture features were extracted and feature vectors were constructed. A probabilistic neural network (PNN) was constructed and trained using this set of feature vectors. The images together with the PBRs and the corresponding feature vector and diagnosis were stored in an image database. Rules for diagnosis and for determining the severity of the disease were generated by analyzing the images known to be affected by bronchiectasis. The rules were then validated by a human expert. The validated rules were stored in the Knowledge Base. When a physician gives a CT image to the CAD system, it first transforms the image into a set of feature vectors, one for each PBR in the image. It then performs the diagnosis using two techniques: PNN and mahalanobis distance measure. The final diagnosis and the severity of the disease are determined by correlating the diagnosis determined by both the techniques in consultation with the knowledge base. The system also retrieves similar cases from the database. Thus, this system would aid the physicians in diagnosing bronchiectasis. © 2009 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 19, 290–298, 2009  相似文献   

11.
Pneumonia is one of the most common and fatal diseases in the world. Early diagnosis and treatment are important factors in reducing mortality caused by the aforementioned disease. One of the most important and common techniques to diagnose pneumonia disease is the X‐ray images. By evaluating these images, various machine‐learning methods are used for accuracy in diagnosis. The presented study in this article utilizes machine‐learning techniques to evaluate these X‐ray images. The diagnosis of pediatric pneumonia is classified with a proposed machine learning method by using the chest X‐ray images. The proposed system firstly utilizes a two‐dimensional discrete wavelet transform to extract features from images. The features obtained from the wavelet method are labeled as normal and pneumonia and applied to the classifier for classification. Besides, Random Forest algorithm is used for the classification technique of 5856 X‐ray images. A 10‐fold cross‐validation method is used to evaluate the success of the proposed method and to ensure that the system avoided overfitting. By using various machine learning algorithms, simulation results reveal that the Random Forest method is proposed and it gives successful results. Results also show that, at the end of the training and validation process, the proposed method achieves higher success with an accuracy of 97.11%.  相似文献   

12.
COVID-19 remains to proliferate precipitously in the world. It has significantly influenced public health, the world economy, and the persons’ lives. Hence, there is a need to speed up the diagnosis and precautions to deal with COVID-19 patients. With this explosion of this pandemic, there is a need for automated diagnosis tools to help specialists based on medical images. This paper presents a hybrid Convolutional Neural Network (CNN)-based classification and segmentation approach for COVID-19 detection from Computed Tomography (CT) images. The proposed approach is employed to classify and segment the COVID-19, pneumonia, and normal CT images. The classification stage is firstly applied to detect and classify the input medical CT images. Then, the segmentation stage is performed to distinguish between pneumonia and COVID-19 CT images. The classification stage is implemented based on a simple and efficient CNN deep learning model. This model comprises four Rectified Linear Units (ReLUs), four batch normalization layers, and four convolutional (Conv) layers. The Conv layer depends on filters with sizes of 64, 32, 16, and 8. A 2 × 2 window and a stride of 2 are employed in the utilized four max-pooling layers. A soft-max activation function and a Fully-Connected (FC) layer are utilized in the classification stage to perform the detection process. For the segmentation process, the Simplified Pulse Coupled Neural Network (SPCNN) is utilized in the proposed hybrid approach. The proposed segmentation approach is based on salient object detection to localize the COVID-19 or pneumonia region, accurately. To summarize the contributions of the paper, we can say that the classification process with a CNN model can be the first stage a highly-effective automated diagnosis system. Once the images are accepted by the system, it is possible to perform further processing through a segmentation process to isolate the regions of interest in the images. The region of interest can be assesses both automatically and through experts. This strategy helps so much in saving the time and efforts of specialists with the explosion of COVID-19 pandemic in the world. The proposed classification approach is applied for different scenarios of 80%, 70%, or 60% of the data for training and 20%, 30, or 40% of the data for testing, respectively. In these scenarios, the proposed approach achieves classification accuracies of 100%, 99.45%, and 98.55%, respectively. Thus, the obtained results demonstrate and prove the efficacy of the proposed approach for assisting the specialists in automated medical diagnosis services.  相似文献   

13.
田东文  白春燕  肖颖 《包装工程》2020,41(9):222-225
目的基于最小二乘支持向量机回归(LSSVR),研究扫描仪图像输入设备的特征化方法。方法以ColorChecker SG标准色卡为目标,通过最小二乘支持向量机建立RGB三通道值到CIE Lab色度值的非线性映射模型,采用基于交叉验证的网格搜索确定模型最优参数,优化LSSVR模型,实现彩色扫描仪的色度特征化。结果所建模型的训练集R-squared为0.996,验证集R-squared为0.998,训练集与验证集的CIEDE2000平均色差分别为1.1463,1.2754。结论 LSSVR模型能够较好地实现彩色扫描仪色度特征化,泛化能力较强,此模型可有效地提高彩色扫描仪特征化的精度且计算处理速度更快。  相似文献   

14.
为增强对新冠肺炎与普通肺炎的区分能力,协助医护人员对肺炎患者进行胸部CT检测,在人工智能图像分析的基础上提出了一种基于CT图像卷积神经网络处理新冠肺炎的检测方法.首先,搭建一个卷积神经网络模型,通过评估模型深度对检测结果的影响,以选择最佳的网络结构;其次,提出了一种禁忌遗传算法,用以获取网络模型中最优的超参数组合,增强...  相似文献   

15.
Coronavirus disease (COVID-19) is an extremely infectious disease and possibly causes acute respiratory distress or in severe cases may lead to death. There has already been some research in dealing with coronavirus using machine learning algorithms, but few have presented a truly comprehensive view. In this research, we show how convolutional neural network (CNN) can be useful to detect COVID-19 using chest X-ray images. We leverage the CNN-based pre-trained models as feature extractors to substantiate transfer learning and add our own classifier in detecting COVID-19. In this regard, we evaluate performance of five different pre-trained models with fine-tuning the weights from some of the top layers. We also develop an ensemble model where the predictions from all chosen pre-trained models are combined to generate a single output. The models are evaluated through 5-fold cross validation using two publicly available data repositories containing healthy and infected (both COVID-19 and other pneumonia) chest X-ray images. We also leverage two different visualization techniques to observe how efficiently the models extract important features related to the detection of COVID- 19 patients. The models show high degree of accuracy, precision, and sensitivity. We believe that the models will aid medical professionals with improved and faster patient screening and pave a way to further COVID-19 research.  相似文献   

16.
A model to predict the autoignition temperatures (AIT) of organic compounds is proposed based on the structural group contribution (SGC) approach. This model has been built up using a 400-compound training set; the fitting ability for these training data is 0.8474, with an average error of 32K and an average error percentage of 4.9%. The predictive capability of the proposed model has been demonstrated on an 83-compound validation set; the predictive capability for these validation data is about 0.5361, with an average error of 70K and an average error percentage of 11.0%. The proposed model is shown to be more accurate than those of other published works. This improvement is largely attributed to the modifications of the group definitions for estimating the AIT instead of the type of empirical model chosen. Through the Q(2) value and hypothesis testing, it was found that the empirical model should be chosen as a polynomial of degree 3. As compared to the known errors in experimentally determining the AIT, the proposed method offers a reasonable estimate of the AIT for the organic compounds in the training set, and can also approximate the AIT for compounds whose AIT is as yet unknown or not readily available to within a reasonable accuracy.  相似文献   

17.
The diagnosis of COVID-19 requires chest computed tomography (CT). High-resolution CT images can provide more diagnostic information to help doctors better diagnose the disease, so it is of clinical importance to study super-resolution (SR) algorithms applied to CT images to improve the resolution of CT images. However, most of the existing SR algorithms are studied based on natural images, which are not suitable for medical images; and most of these algorithms improve the reconstruction quality by increasing the network depth, which is not suitable for machines with limited resources. To alleviate these issues, we propose a residual feature attentional fusion network for lightweight chest CT image super-resolution (RFAFN). Specifically, we design a contextual feature extraction block (CFEB) that can extract CT image features more efficiently and accurately than ordinary residual blocks. In addition, we propose a feature-weighted cascading strategy (FWCS) based on attentional feature fusion blocks (AFFB) to utilize the high-frequency detail information extracted by CFEB as much as possible via selectively fusing adjacent level feature information. Finally, we suggest a global hierarchical feature fusion strategy (GHFFS), which can utilize the hierarchical features more effectively than dense concatenation by progressively aggregating the feature information at various levels. Numerous experiments show that our method performs better than most of the state-of-the-art (SOTA) methods on the COVID-19 chest CT dataset. In detail, the peak signal-to-noise ratio (PSNR) is 0.11 dB and 0.47 dB higher on CTtest1 and CTtest2 at SR compared to the suboptimal method, but the number of parameters and multi-adds are reduced by 22K and 0.43G, respectively. Our method can better recover chest CT image quality with fewer computational resources and effectively assist in COVID-19.  相似文献   

18.
We investigated whether a convolutional neural network (CNN) can enhance the usability of computer‐aided detection (CAD) of chest radiographs for various pulmonary abnormal lesions. The numbers of normal and abnormal patients were 6055 and 3463, respectively. Two radiologists delineated regions of interest for lesions and labeled the disease types as ground truths. The datasets were split into training, tuning, and testing as 7:1: 2. Total test sets were randomly selected in 1214 normal and 690 abnormal. A 5‐fold, cross‐validation was performed on our datasets. For the classification of normal and abnormal, we developed a CNN based on DenseNet169; for abnormal detection, The You Only Look Once (YOLO) v2 with DenseNet was used. Detection and classification of normal and five classes of diseases (nodule[s], consolidation, interstitial opacity, pleural effusion, and pneumothorax) on chest radiographs were analyzed. Our CNN model classified chest radiographs as normal or abnormal with an accuracy of 97.8%. For the results of the abnormal, F1 score, was 75.2 ± 2.28% for nodules, 55.0 ± 4.3% for consolidation, 78.2 ± 7.85% for interstitial opacity, 81.6 ± 2.07% for pleural effusion, and 70.0 ± 7.97% for pneumothorax, respectively. In addition, we conducted the experiments between our method and RetinaNet with only nodules. The results of our method and RetinaNet at cutoff‐0.5 in the free response operating characteristic curve were 83.45% and 80.55%, respectively. Our algorithm demonstrated viable detection and disease classification capacity and could be used for CAD of lung diseases on chest radiographs.  相似文献   

19.
Pelvic bone segmentation is a vital step in analyzing pelvic CT images, which assists physicians with diagnostic decision making in cases of traumatic pelvic injuries. Due to the limited resolution of the original CT images and the complexity of pelvic structures and their possible fractures, automatic pelvic bone segmentation in multiple CT slices is very difficult. In this study, an automatic pelvic bone segmentation approach is proposed using the combination of anatomical knowledge and computational techniques. It is developed for solving the problem of accurate and efficient bone segmentation using multiple consecutive pelvic CT slices obtained from each patient. Our proposed segmentation method is able to handle variation of bone shapes between slices there by making it less susceptible to inter‐personal variability between different patients' data. Moreover, the designed training models are validated using a cross‐validation process to demonstrate the effectiveness. The algorithm's capability is tested on a set of 20 CT data sets. Successful segmentation results and quantitative evaluations are present to demonstrate the effectiveness and robustness of proposed algorithm, well suited for pelvic bone segmentation purposes.  相似文献   

20.
Visible and near-infrared (Vis-NIR, 350-2500 nm) diffuse reflection spectroscopy (DRS) models built from "as-collected" samples of solid cattle manure accurately predict concentrations of moisture and crude ash. Because different organic molecules emit different spectral signatures, variations in livestock diet composition may affect the predictive accuracy of these models. This study investigates how differences in livestock diet composition affect Vis-NIR DRS prediction of moisture and crude ash. Spectral signatures of solid manure samples (n = 216) from eighteen groups of cattle on six different diets were used to calibrate and validate partial least squares (PLS) regression models. Seven groups of PLS models were created and validated. In the first group, two-thirds of all samples were randomly selected as the calibration set and the remaining one-third were used for the validation set. In the remaining six groups, samples were grouped by livestock diet (ration). Each ration in turn was held out of calibrations and then used as a validation set. When predicting crude ash, the fully random calibration model produced a root mean square deviation (RMSD) of 2.5% on a dry basis (db), ratio of standard error of prediction to the root mean squared deviation (RPD) of 3.1, bias of 0.14% (db), and correlation coefficient r(2) of 0.90., When predicting moisture, an RMSD of 1.5% on a wet basis (wb), RPD of 4.3, bias of -0.09% (wb), and r(2) of 0.95 was achieved. Model accuracy and precision were not impaired by exclusion of any single ration from model calibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号