首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
陈嘉俊  陈伟  赵雷 《计算机科学》2023,(11):114-121
现有路网场景下的轨迹表示学习(Trajectory Representation Learning, TRL)方法可分为两类,即基于循环神经网络(RNN)和长短期记忆(LSTM)的序列化模型以及基于自注意力机制的学习模型。尽管已有研究做出了重大贡献,但它们仍然存在以下问题:(1)现有的路网表示学习方法忽略了相邻路段之间的转移概率,不能充分捕获路网的拓扑结构信息;(2)基于自注意力机制的学习模型在短轨迹和中长轨迹上的表现优于序列化模型,但在长轨迹的表示学习上性能较差,未能很好刻画轨迹的长期语义特征。基于此,文中提出了一个新的轨迹表示学习模型TRMS。该模型采用概率感知游走来优化传统DeepWalk算法,以深入挖掘路网的拓扑结构,然后将自注意力机制和Masked Seq2Seq学习框架相结合来捕获轨迹的长期语义特征。最后,基于真实轨迹数据进行实验,结果表明,TRMS在短、中、长轨迹的嵌入表示上,性能都优于最好的基线方法。  相似文献   

2.
人们构建的知识库通常被表示为网络形式,节点代表实体,连边代表实体间的关系.在网络表示形式下,人们需要设计专门的图算法存储和利用知识库,存在费时费力的缺点,并受到数据稀疏问题的困扰.最近,以深度学习为代表的表示学习技术受到广泛关注.表示学习旨在将研究对象的语义信息表示为稠密低维实值向量,知识表示学习则面向知识库中的实体和关系进行表示学习.该技术可以在低维空间中高效计算实体和关系的语义联系,有效解决数据稀疏问题,使知识获取、融合和推理的性能得到显著提升.介绍知识表示学习的最新进展,总结该技术面临的主要挑战和可能解决方案,并展望该技术的未来发展方向与前景.  相似文献   

3.
符号表达的模仿学习是共融机器人提高其智能性的一条便捷、可行的途径,也为解决复杂、多步骤任务的学习问题提供了一个切实可行的解决方案,而对示教轨迹进行自动分割并获取其基本动作是成功应用这种学习方式的前提条件.鉴于此,首先,在介绍符号表示的模仿学习的基础上,分析该种学习方式对自动分割方法的具体要求;然后,按照示教任务先验知识的有无将其分为两大类并详细地介绍每类所含的典型分割方法;最后,对上述轨迹分割方法进行对比分析与总结,并展望示教轨迹自动分割方法未来的发展趋势.  相似文献   

4.
时空轨迹大数据模式挖掘研究进展   总被引:3,自引:4,他引:3  
时空轨迹挖掘是数据挖掘领域的前沿研究课题,通过研究和开发时空轨迹挖掘技术,来发现隐藏在轨迹大数据中有价值的规律和知识以供决策支持。本文介绍了时空轨迹大数据模式挖掘与知识发现领域的研究进展;然后对时空轨迹模式挖掘技术产生的背景、应用领域和研究现状作了简介,并探讨了面向时空轨迹大数据模式挖掘的研究内容、系统架构以及关键技术,最后对时空轨迹频繁模式、伴随模式、聚集模式和异常模式的挖掘算法思想进行了阐述。  相似文献   

5.
针对利用最小包围盒(MBB)压缩的移动物体时空轨迹,为了能对其进行有效地聚类,提出了一个基于盒内数据点密度的轨迹间相似性度量公式.首先,把两条轨迹的相似性度量转化为两条轨迹上有时间交叠的MBB之间的相似性度量,这在很大程度上减少了数据存储量.其次,分析两条轨迹上有时间交叠的MBB之间影响相似性的因素:时间持续、空间距离和盒内数据点的密度.剖析这3个因素对轨迹相似性的影响作用,提出了利用MBB压缩的移动物体时空轨迹相似性度量公式.实验证明采用本公式对移动物体时空轨迹进行聚类,可以提高聚类结果有效性指标Dunn的值.  相似文献   

6.
7.
针对海量的用户轨迹数据进行研究,提出一种动态分析移动对象轨迹模式、预测轨迹位置的方法(PRED)。首先使用改进的模式挖掘模型,提取轨迹频繁模式(简称T-模式),然后提出DPTUpdate算法,设计蕴含时空信息的快捷数据结构--DPT(Dynamic Pattern Tree),存储和查询移动物体的T-模式,并提出Prediction算法计算最佳匹配度,得到移动对象轨迹的预测位置。PRED方法可提供动态分析的能力,基于真实数据集进行对比实验,结果证明,平均准确率达到72%,平均覆盖率达到92.1%,与已有方法相比,其预测效果有显著提升。  相似文献   

8.
刘忠鑫  唐郅杰  夏鑫  李善平 《软件学报》2023,(12):5501-5526
代码变更是软件演化过程中的关键行为,其质量与软件质量密切相关.对代码变更进行建模和表示是众多软件工程任务的基础,例如即时缺陷预测、软件制品可追溯性恢复等.近年来,代码变更表示学习技术得到了广泛的关注与应用.该类技术旨在学习将代码变更的语义信息表示为稠密低维实值向量,即学习代码变更的分布式表示,相比于传统的人工设计代码变更特征的方法具有自动学习、端到端训练和表示准确等优点.但同时该领域目前也存在如结构信息利用困难、基准数据集缺失等挑战.对近期代码变更表示学习技术的研究及应用进展进行了梳理和总结,主要内容包括:(1)介绍了代码变更表示学习及其应用的一般框架.(2)梳理了现有的代码变更表示学习技术,总结了不同技术的优缺点.(3)总结并归类了代码变更表示学习技术的下游应用.(4)归纳了代码变更表示学习技术现存的挑战和潜在的机遇,展望了该类技术的未来发展方向.  相似文献   

9.
布尔类型关联规则挖掘中,有两个需要反复执行的操作:判断一个项集是否为另一个项集的子集;判断两个等势项集是否只相差最后一项。对于这两个操作,使用传统的方法需要进行多次匹配,算法的效率不高。提出了一种表示项集的新方法-整数表示,两个操作均只需要一次处理,效率明显提高,从而对整个挖掘算法的效率有了明显的改善。  相似文献   

10.
如何利用多源异构时空数据进行准确的轨迹预测并且反映移动对象的移动特性是轨迹预测领域的核心问题.现有的大多数轨迹预测方法是长序列轨迹模式预测模型,根据历史轨迹的特点进行预测,或将当前移动对象的轨迹位置放入时空语义场景根据历史移动对象轨迹预测位置.综述当前常用的轨迹预测模型和算法,涉及不同的研究领域.首先,阐述了多模式轨迹预测的主流工作,轨迹预测的基本模型类;其次,对不同类的预测模型进行总结,包括数学统计类、机器学习类、滤波算法,以及上述领域具有代表性的算法;再次,对情景感知技术进行了介绍,描述了不同领域的学者对情景感知的定义,阐述了情景感知技术所包含的关键技术点,诸如情景感知计算、情景获取和情景推理的不同类模型,分析了情景感知的不同分类、过滤、存储和融合以及它们的实现方法等.详细介绍了情景感知驱动的轨迹预测模型技术路线及各阶段任务的工作原理.给出了情景感知技术在真实场景中的应用,包括位置推荐,兴趣点推荐等,通过与传统算法对比,分析情景感知技术在此类应用中的优劣.详细介绍了情景感知结合LSTM (long short-term memory)技术应用于行人轨迹预测领域的新方法.最后,总结了...  相似文献   

11.
传感器技术的飞速发展催生大量交通轨迹数据,轨迹异常检测在智慧交通、自动驾驶、视频监控等领域具有重要的应用价值.不同于分类、聚类和预测等轨迹挖掘任务,轨迹异常检测旨在发现小概率、不确定和罕见的轨迹行为.轨迹异常检测中一些常见的挑战与异常值类型、轨迹数据标签、检测准确率以及计算复杂度有关.针对上述问题,全面综述近20年来轨迹异常检测技术的研究现状和最新进展.首先,对轨迹异常检测问题的特点与目前存在的研究挑战进行剖析.然后,基于轨迹标签的可用性、异常检测算法原理、离线或在线算法工作方式等分类标准,对现有轨迹异常检测算法进行对比分析.对于每一类异常检测技术,从算法原理、代表性方法、复杂度分析以及算法优缺点等方面进行详细总结与剖析.接着,讨论开源的轨迹数据集、常用的异常检测评估方法以及异常检测工具.在此基础上,给出轨迹异常检测系统架构,形成从轨迹数据采集到异常检测应用等一系列相对完备的轨迹挖掘流程.最后,总结轨迹异常检测领域关键的开放性问题,并展望未来的研究趋势和解决思路.  相似文献   

12.
近年来稀疏表示技术在信号处理、图像处理、目标识别、盲源分离等领域都有着突出的贡献. 为了全面的了解和分析现有稀疏表示优化算法, 首先回顾了稀疏表示技术的历史进程, 简单描述了稀疏表示技术的原理, 然后将稀疏表示优化算法分为贪心算法和约束算法以及其他算法三大类, 具体分析了前两种类别算法的原理和特征, 介绍了两类算法的代...  相似文献   

13.
时间序列是将同一指标的数值按照时间的先后顺序排列组成的一组随机数列.随着科学技术的蓬勃发展,时间序列在数据挖掘领域中的应用变得越来越广泛.综合分析了近年来时间序列在数据挖掘领域的文献成果,对时间序列特征表示和相似性度量方法进行了阐述.针对时间序列特征表示方法,从非数据适应性方法、数据自适应性方法、基于模型的方法三方面进...  相似文献   

14.
时空轨迹数据的获取变得越来越容易,轨迹数据刻画了移动对象的行为模式与活动规律,是对移动对象在时空环境下的移动模式和行为特征的真实写照,在城市规划、交通管理、服务推荐、位置预测等领域具有重要的应用价值.这些过程通常需要通过对时空轨迹数据进行模式挖掘才能得以实现.简述了轨迹数据挖掘的预处理和基本步骤,归纳了异常轨迹检测方法...  相似文献   

15.
代码表征是对代码数值化的一种技术,把代码映射为一组连续的实值向量,提取隐藏在代码内部的属性,辅助程序员生成或分析代码,是代码克隆、代码推荐、代码剽窃等软件工程任务的核心技术和研究热点。研究者们对代码表征方面进行了一系列研究,根据源代码抽取信息的方式,分为基于文本的表征、基于语法的表征、基于语义的表征和基于功能的表征;根据表征粒度的大小,分为基于词汇的表征、基于语句的表征、基于函数的表征等不同等级;根据表征方法的不同,分为基于统计的模型、基于自然语言的模型和基于深度学习的模型。对近几年基于深度学习的代码表征研究进展进行了综述,并从表征粒度、表征层次、表征模型、应用场景等方面对现有工作进行了概括、比较和分析。对基于深度学习的代码表征的未来发展趋势进行分析和展望。  相似文献   

16.
知识追踪是一项评估学生学习过程中知识状态演变情况的任务。现有大多数方法都致力于探索不同的知识状态评估方法。然而,答题过程中更为基础的题目表征受到的关注相对较少。因此,该文提出了一种融合通用题目表征学习的神经知识追踪框架。具体地,该文首先设计了一种通用的题目表征方法,通过知识点、难度和题目独有特征来区分题目。然后,采用现有知识追踪方法同时捕捉知识状态演变并学习题目表征。最后,利用知识状态和待回答题目表征的内积来模拟回答过程。在三个真实数据集上的实验结果表明,该文方法可以在知识追踪过程中学习精确有效的题目表征,并且显著提升了基线知识追踪方法的性能,使其能够超过现有最优方法。  相似文献   

17.
针对现有热点区域发现算法难以从轨迹数据集中准确识别活动热点的问题,提出了基于轨迹结构的热点区域发现框架(TS_HS)。TS_HS由候选区域发现(CHSD)算法和热点区域过滤(HSF)算法组成。首先,使用基于网格相对密度的CHSD识别空间上的轨迹密集区域作为候选热点区域;然后,利用HSF根据候选区域中轨迹的活动特征和时间变化特征,筛选出移动对象活动频繁的热点区域。在Geolife数据集上进行的实验表明,与基于全局密度的热门区域发现算法(GD_HR)以及移动轨迹时空热点区域发现算法(SDHSRD)相比,TS_HS能更有效地解决多密度热点区域的识别问题。实验结果表明,TS_HS能够根据轨迹的活动特征准确发现移动对象的活动热点区域。  相似文献   

18.
随着短视频数量的爆发式增长, 精准的个性化短视频推荐成为学术界和工业界的迫切需求。然而,现有的推荐方法没有考虑实际的短视频具有数据多源异构多模态、用户行为复杂多样、用户兴趣动态变化等特点。短视频模态间的语义鸿沟、社交网络用户多行为挖掘、用户动态兴趣捕捉依然是短视频推荐领域面临的三个重要问题。针对当前推荐系统存在的问题,并充分考虑短视频推荐系统的实际需求,本文介绍了短视频推荐中基于图表示学习的短视频推荐方法;研究了短视频异构多模态特征表示,充分挖掘视频内容特征并进行高效融合;研究了短视频社交网络用户多行为表示,通过社交网络用户多种行为挖掘更细粒度的用户偏好;研究了用户的动态偏好表示方法,通过利用时序信息建模用户的动态兴趣,保证推荐结果的准确度并增加其多样性与个性化。本研究可在理论和实践上推进基于图特征学习的短视频推荐研究,也可作为短视频推荐系统的关键技术。  相似文献   

19.
尽管深度学习因为强大的非线性表示能力已广泛应用于许多领域,多源异构模态数据间结构和语义上的鸿沟严重阻碍了后续深度学习模型的应用。虽然已经有许多学者提出了大量的表示学习方法以探索不同模态间的相关性和互补性,并提高深度学习预测和泛化性能。然而,多模态表示学习研究还处于初级阶段,依然存在许多科学问题尚需解决。迄今为止,多模态表示学习仍缺乏统一的认知,多模态表示学习研究的体系结构和评价指标尚不完全明确。根据不同模态的特征结构、语义信息和表示能力,从表示融合和表示对齐两个角度研究和分析了深度多模态表示学习的进展,并对现有研究工作进行了系统的总结和科学的分类。同时,解析了代表性框架和模型的基本结构、应用场景和关键问题,分析了深度多模态表示学习的理论基础和最新发展,并且指出了多模态表示学习研究当前面临的挑战和今后的发展趋势,以进一步推动深度多模态表示学习的发展和应用。  相似文献   

20.
随着智能时代和大数据时代的到来,各种复杂异构数据不断涌现,成为数据驱动的人工智能方法、机器学习模型的基础。复杂异构数据的表征直接关系着后续模型的学习性能,因此如何有效地表征复杂异构数据成为机器学习的一个重要研究领域。文中首先介绍了数据表征的多种类型,并提出了现有数据表征方法面临的挑战;其次,根据数据类型将数据划分成单一类型数据和复合类型数据,针对单一类型数据,分别介绍了4种典型数据的表征学习发展现状和代表算法,包含离散数据、网络数据、文本数据和图像数据;然后,详细介绍了4种由多个单一数据或数据源复合而成的复杂数据,包含了离散特征与连续特征混合的结构化数据、属性数据与复杂网络复合的属性网络数据、来自不同领域的跨领域数据和由多种数据类型复合的多模态数据,分别介绍了基于上述复杂数据的表征学习现状以及最新的表征学习模型;最后,对复杂异构数据表征学习的发展趋势进行了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号