首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
该文针对贡川水电站水闸4~#、9~#闸墩裂缝问题进行分析。闸墩结构应力计算结果表明,闸墩混凝土强度满足设计要求,外荷载对闸墩裂缝影响不大。根据裂缝形成的时间、气温、长度与深度、闸墩混凝土质量分析,认为该闸墩裂缝主要由混凝土质量及温差引起。据此分析,闸墩裂缝采用表面修补法修补,效果良好。经此处理后,水闸墩顶未再发现裂缝。  相似文献   

2.
高拱坝孔口周围应力分布复杂,需适当配筋改善孔口结构的受力状态,保证拱坝的安全运行。以白鹤滩拱坝3~#底孔为例,首先对施工期工况下孔口结构进行三维有限元计算,分析孔口周围的应力分布规律和产生机理,然后依据应力图形法对孔口进行配筋设计,最后采用钢筋混凝土有限元法对完成配筋的孔口进行非线性分析。结果表明:在坝体自重的作用下,混凝土泊松比效应是引起孔口顶、底板出现顺河向拉应力的主要原因;钢筋整体应力不高,配筋设计方案有较大的安全裕度,应力图形法偏于保守。但出于安全考虑,仍应采用应力图形法进行配筋设计。  相似文献   

3.
溪洛渡拱坝导流底孔封堵时,承受水头达200m,闸墩悬挑长度近30m,结构受力复杂,设计难度很高。在提出对环形预应力锚索模拟方法的基础上,采用三维有限元法对3号、4号导流底孔预应力闸墩进行了应力计算。计算结果表明,在最不利荷载作用下出口闸墩段、环形锚索附近坝体以及支铰大梁大部分区域处于受压状态,极值为5.0MPa,仅在闸墩孔口、预应力锚索和大梁支铰附近区域产生局部拉应力,极值为1.5MPa,满足设计要求,说明3号、4号导流底孔预应力闸墩悬臂结构的设计是合理的。  相似文献   

4.
小湾电站左岸大坝共布置有2号导流底孔、2号放空底孔、5、6号泄洪中孔及4、5号泄洪表孔,所有孔口坝段均设计有上下游闸墩倒悬体结构,闸墩倒悬体结构在下游孔口部位还设计有启闭工作弧门的支承大梁,倒悬体及支承大梁作为小湾大坝孔口坝段泄水的重要土建结构,该结构体形复杂,施工难度大,质量要求高,本文通过对孔口坝段倒悬体及支承大梁的设计和施工进行介绍,为后续类似工程积累施工经验。  相似文献   

5.
为探究高拱坝深底孔出口悬臂结构的影响因素,通过四种设计方案,分别研究闸墩厚度、支铰大梁高度、弧门推力位置以及预应力锚索对底孔出口悬臂结构关键部位应力的影响。采用ANSYS有限元分析法,建立高拱坝深底孔有限元模型,选取坝体在正常蓄水位时的运行工况进行计算。结果表明,对于100 m级以上高拱坝深底孔悬臂结构,当底孔出口悬臂结构大于25 m时,在其关键部位会产生较大的拉应力。因此,建议通过在闸墩布置预应力锚索和调整闸墩厚度来减少闸墩与坝下游面相交处的拉应力,通过在支铰大梁两侧布置预应力锚索和增大支铰大梁高度来减小闸墩内侧与大梁相交处的拉应力。该研究结果可以为降低高拱坝深底孔出口悬臂结构关键部位或者相类似悬臂结构的应力提供一定参考。  相似文献   

6.
采用振型分解反应谱法,分析了在动土和动水同时作用下混凝土重力坝的自振特性和地震动力响应,重点研究了溢流堰、闸墩等关键部位的应力分布状态。结果表明:闸墩与底孔交界附近因几何形状突变而产生了拉应力集中现象,拉应力值较大,范围较大;大梁与闸墩交界处,在弧门推力作用和几何形状突变等因素的影响下,产生了较大的主拉应力和主拉应力区,在配筋计算时应予以注意;大坝整体上的应力能满足抗震要求,坝体局部区域范围很小的拉应力不会影响大坝的安全。  相似文献   

7.
型钢混凝土闸墩是一种新型闸墩,其结构设计研究对水电站建设具有重要意义。文章以庄里水库溢洪道闸墩为例,利用数值模拟结合理论研究的方法对不同配筋方式下溢流坝闸墩位移和应力的影响进行了分析。研究结果显示:配筋和增加钢筋直径可有效改善闸墩的受力及变形情况,拉应力随配筋间距呈先减后增的整体趋势; D32@50为该型钢混凝土闸墩两侧配筋的最佳方式。  相似文献   

8.
溪洛渡双曲拱坝坝身共布置7个表孔,8个深孔,以及10个导流底孔。其中深孔孔口尺寸为6m×6.7m,泄水水头高105m,深孔出口处闸墩最大悬臂长达24.87m,闸墩最小厚度为3.5m,支撑大梁尺寸为8.0m×7.0m×5.0m(长×宽×高),另外出口处弧门推力巨大,单孔弧门推力最高达82857kN,其应力应变状态极为复杂。采用三维有限元法对溪洛渡拱坝建立精细整体模型,对深孔部位进行应力分析研究。分析表明:溪洛渡拱坝闸墩预应力吨位和布置合理,表现在深孔孔口应力在进口段、孔身以及出口段可以满足设计应力要求;对于工况三(正常蓄水+温降+弧门挡水)大坝运行时,支铰大梁和闸墩下游端部出现拉应力最大极值,拉应力分别为3.0MPa和2.6MPa,但是分布范围有限,可以通过适当配筋满足设计要求。另外,文中还与二滩拱坝中孔孔口应力进行了类比分析,结果表明溪洛渡深孔孔口应力与二滩中孔类似,孔口角缘压应力存在偏压现象,但由于溪洛渡拱坝孔口周围温降荷载小,使得溪洛渡孔口内壁拉应力极值小于二滩。  相似文献   

9.
采用显式有限元结合黏弹性人工边界的地震波动反应分析方法,在计入坝体横缝动态接触非线性影响基础上,对溪洛渡拱坝采用模拟孔口及闸墩结构、仅模拟孔口不模拟闸墩和孔口闸墩结构均不考虑的3种模型进行地震响应分析,研究孔口、闸墩结构和大坝的静态和静动综合应力响应。对比分析结果表明,孔口、闸墩的存在对大坝主体的静动综合应力分布规律影响不大,而孔口闸墩区域位于动态反应较大的坝体中上部,由于闸墩的悬挑及截面变化的复杂性,以及孔口对坝身的削弱作用,这一区域将出现数值较大的拉应力集中区,主要分布于上游闸墩根部和下游面深表孔之间以及顶部大梁位置,在溪洛渡拱坝深孔、表孔抗震设计中应予以重视。  相似文献   

10.
当前,坝内开孔泄流已成为坝工结构设计主流趋势,但坝体开孔孔口应力集中会使孔口周围混凝土产生裂缝从而导致坝体破坏,适当配筋能够较好地避免该问题。本文以某水电站为例,建立三维有限元模型,采用三维线弹性有限元法对冲沙底孔周边混凝土结构典型部位进行应力分析,评价其应力状态,并以"静力应力为辅、动力分析为主"为基础,进行动力配筋设计。结果表明,配筋满足动力作用下结构安全性要求,为坝工孔口结构动力配筋设计提供了参考依据。  相似文献   

11.
本文采用三维非线性有限元方法,选用塑性损伤及弥散裂缝模型模拟混凝土,选用通用的理想弹塑性模型模拟钢筋。首先对钢筋混凝土悬臂梁开裂后应力进行计算,计算结果与解析解的对比验证了模型的正确性;然后将上述模型应用于实际工程—丹达河水电站拱坝闸墩的计算分析中。结果表明:采用上述模型时,计算结果合理,对于混凝土材料非线性关系的模拟是行之有效的,以丹达河水电站拱坝闸墩为例,计算成果可作为闸墩配筋设计的依据。  相似文献   

12.
目前沙河流域很多水闸由于年代久远、设计标准低、混凝土老化破损等,在安全方面存在诸多隐患,严重影响了水闸效益的发挥。水闸的重点部位如底板、闸墩等混凝土的除险加固分析处理也就变得尤为重要。该文在总结沙河防潮闸存在的主要问题的基础上,着重以闸底板、闸墩、胸墙部位出现的问题下手,对加固处理材料、特点、技术进行分析,并详细阐述了针对以上部分的加固处理方案。  相似文献   

13.
目前沙河流域很多水闸由于年代久远、设计标准低、混凝土老化破损等,在安全方面存在诸多隐患,严重影响了水闸效益的发挥.水闸的重点部位如底板、闸墩等混凝土的除险加固分析处理也就变得尤为重要.该文在总结沙河防潮闸存在的主要同题的基础上,着重以闸底板、闸墩、胸墙部位出现的问题下手,对加固处理材料、特点、技术进行分析,并详细阐述了...  相似文献   

14.
针对闸墩中孔周边区域应力分布复杂的问题,进行三维有限元分析。为准确评估中孔闸墩结构运行期的安全性,根据整体拱坝模型计算结果,运用子模型方法,获取各种工况下中孔闸墩结构的局部边界条件,基于锚索测力计实测数据,建立考虑时效、外界温度及上游水位波动等影响的预应力回归模型。在此基础上,采用三维非线性有限元分析方法对西南某碾压混凝土拱坝中孔闸墩结构进行全面安全评价。计算结果表明:当前工作状态下,闸墩结构应力分布规律与设计状态基本相同,颈部最大法向应力为1.27 MPa,出现在左中孔右边墙位置,小于允许拉应力1.54 MPa,满足闸墩抗裂要求。  相似文献   

15.
三河口拱坝底孔是高水头、工作闸门承受大推力和出口闸墩为大悬臂的复杂受力结构,闸墩采用预应力结构,较大改善了闸墩的受力条件及应力状态。通过ANSYS三维有限元计算分析,对闸墩锚索的布置参数、张拉顺序、应力影响范围以及相互影响进行分析、评价,确定锚索布置的设计方案,并进一步对选定方案研究,验证设计方案的合理性。该研究成果将为类似深底孔设计及闸墩大悬臂结构高拱坝的应力分析提供一定参考依据。  相似文献   

16.
按照闸墩实际材料与浇筑过程,利用有限元仿真程序,计算了闸墩在施工期及运行期的温度场和应力场,得到了其开裂位置、开裂时间和开裂状态;与闸墩裂缝实际调查资料的对比说明,闸墩内部的过高温度是导致闸墩开裂的根本原因;通过虚拟浇筑计划下的仿真分析表明,选择合理的混凝土浇筑时间与方式,可以避免闸墩开裂。  相似文献   

17.
张方安 《红水河》2014,(2):28-30
常规电站尾水出口启闭机排架与尾水中心线垂直,可直接利用尾水闸墩顶部做施工平台,岩滩水电站扩建工程尾水出口闸墩在平面上是错开式布置,与洞轴线斜交34.42°,排架现浇混凝土的承重支撑难度大,工期紧。结合现场施工环境,从闸墩顶部开始,先施工排架框架柱混凝土到轨道梁底部,架设桁架梁施工排架轨道梁,再利用桁架反吊模板施工下两层联系梁。该施工方法为桥机安装调试争取了充裕时间,为工程首台机组按期发电创造了条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号