首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
《矿冶》2021,30(1)
某铜金银多金属复杂高硫铜矿铜品位2.52%,含S 27.59%,伴生Au、Ag分别达7.8g/t、585.8g/t,金属回收价值高,硫化矿含量接近60%,铜硫分离困难。采用混合浮选技术,在粗磨基础上,对粗精矿进行再磨处理,药剂制度上采用新型抑制剂STY和CaO组合使用,并且加入少量硫化钠与活性炭进行脱药处理。采用单因素方法探索了药剂用量和药剂制度对浮选效果的影响。结果表明,在脱药剂(活性炭+Na_2S)用量为(1 500+100)g/t、石灰4 500g/t、STY 1 200g/t最佳药剂制度条件下可得到铜品位21.27%、回收率高达92.43%,含银高达4 115.8g/t、含金达34.9g/t的铜精矿,硫品位45%、含金7.5g/t、含银153.2g/t的硫精矿;铜硫分离效果很好,有价金属铜、硫、金、银均可得到高效回收。  相似文献   

2.
高起方 《矿冶》2020,29(1):32-36
某高铁铜硫多金属矿铁品位45.80%、铜品位0.48%、硫品位2.3%、金品位0.24g/t,有用矿物相互嵌布影响分选效果。采用"铜硫混合浮选—浮选尾矿磁选回收铁—铜硫分离"的联合工艺流程处理该矿石,并采用Mos-2+MA-1组合捕收剂捕收、铜硫粗精矿再磨及强化扫选等手段,可获得铜品位20.14%、金品位8.73g/t、铜回收率88.53%、金回收率76.75%的铜精矿;硫品位41.56%、硫回收率77.70%的硫精矿;铁品位67.83%、铁回收率90.24%的铁精矿,实现了矿石中铁、铜、硫、金的高效回收。  相似文献   

3.
铜锌硫化矿粗磨后混合浮选具有回收率高和成本低的优势,但混合精矿面临铜锌硫分离的难题。云南思茅地区的铜锌硫混合粗精矿,其细度为-74μm含量75%;Cu,2.56%;Zn,5.23%;S,37.21%。采用混合粗精矿再磨-分步降硫-铜锌分离工艺,研究了再磨细度、药剂用量等因素对铜、锌矿物和硫矿物分离效果的影响。当粗精矿再磨细度为-38μm含量90%时,闭路试验获得品位和回收率均较高的铜精矿、锌精矿和硫精矿产品,铜精矿含Cu 20.42%,Cu回收率82.47%;锌精矿含Zn 45.07%,Zn回收率83.88%;硫精矿含S 38.40%,S回收率81.78%。说明对混合精矿先分步脱硫,再铜锌分离可实现各矿物较彻底的分离。本研究可为混合粗精矿的高效浮选分离提供一定的参考。  相似文献   

4.
为了合理开发利用某含金硫化铜矿资源,开展了工艺矿物学和选矿综合利用试验研究。研究显示,矿石中主要有价元素铜品位为0.57%,伴生元素金品位为1.56 g/t;铜主要以黄铜矿的形式存在,金主要以自然金和银金矿的形式赋存,其载体矿物多为黄铁矿和黄铜矿。以YZ-05为捕收剂,采用“铜金硫混合浮选—铜硫分离—硫精矿再磨—金硫分离”的分选试验流程,闭路试验得到了铜精矿、金精矿和硫精矿,其中铜精矿Cu品位为19.57%、回收率88.7%,Au品位为36.93 g/t、回收率65.5%,Ag品位为61.00 g/t,回收率46.70%;金精矿Au品位42.27 g/t、回收率21.1%金综合回收率为86.6%;硫精矿中S品位为48.24%,回收率为69.70%。该研究为此矿石的综合回收利用提供了技术依据。  相似文献   

5.
李鹏飞  刘曙  汤启宙  王静 《现代矿业》2016,(4):94-97,99
鄂东某选厂采用"先磁后浮"原则工艺流程处理铁硫共生铁矿石,生产主产品铁精矿和副产品铜精矿、硫精矿。由于浮选条件的限制,铜精矿品位较低,长期处在14%左右,铜、硫精矿回收率均不高,仅35.14%、39.83%。为改善铜、硫精矿质量,在考察生产现场的基础上,就浮选给矿浓度、药剂制度进行混合浮选、分离浮选试验。结果表明,在浮选给矿浓度30%,混合浮选乙黄药用量80 g/t,2#油用量60 g/t,分离浮选石灰改用B石灰,用量1 000 g/t,活性炭和Z-200用量分别为80,10 g/t基本不变的条件下,原选铁尾矿经1粗1精铜硫混浮、1粗2精铜硫分离处理,可获得铜品位16.55%、回收率69.97%的铜精矿和硫品位41.92%、回收率61.91%的硫精矿。铜、硫精矿质量得到显著改善,实现了该铁矿石铜、硫的有效回收,提高了资源综合利用效率,为挖掘铜、硫精矿潜能提供了技术依据。  相似文献   

6.
采用浮选工艺回收堆存尾矿中的金、银、铜、硫等有价金属元素。金、银富集在铜精矿与硫精矿中,最终得到含金82.17g/t,含银1 921.68g/t,含铜15.46%的铜精矿;含金4.13g/t,含银156.20g/t,含硫41.36%的硫精矿。实现了有用元素的综合回收。  相似文献   

7.
杨文寿 《矿冶工程》2022,42(3):84-87
对某含铜金银多金属硫化矿尾矿进行了综合利用试验研究。该尾矿主要有价元素为Cu、Au和Ag, 含量分别为0.16%、0.36 g/t、62.74 g/t, 主要金属矿物为黄铁矿和黄铜矿, 金、银主要分布于黄铜矿中, 其次分布于黄铁矿中。采用磨矿-铜硫混合浮选-铜硫分离浮选工艺回收尾矿中的有价组分, 开展了磨矿细度、矿浆pH值、分散剂用量、捕收剂用量等浮选条件试验, 确定了相关工艺参数, 闭路试验获得了铜精矿产率0.68%, Cu品位18.96%、Au品位36.75 g/t、Ag品位5286.37 g/t, Cu回收率80.58%、Au回收率69.42%、Ag回收率58.79%;硫精矿产率3.39%, S品位37.16%、Cu含量0.28%、Au含量2.05 g/t、Ag含量306.81 g/t, S回收率78.24%、Cu回收率5.93%、Au回收率19.30%、Ag回收率17.01%;实现了堆存尾矿中Cu、Au、Ag、S等有价元素的高效综合利用。  相似文献   

8.
为了确定青海某低品位复杂难选铅锌矿石的选矿工艺,在工艺矿物学研究的基础上进行了选矿试验研究。结果表明,矿石在磨矿细度为-0.074 mm占75%的情况下,采用铜铅混合浮选—混合精矿铜铅硫分离—铜铅混浮尾矿浮选选锌流程处理矿石,可获得铜品位为14.20%、含金26.77g/t、含银466.40 g/t、铜回收率为16.55%的铜精矿,铅品位41.22%、含银63.60 g/t、铅回收率为69.92%、银回收率为16.84%的铅精矿,锌品位为40.96%、含银53.40g/t、锌回收率为67.04%、银回收率为23.13%的锌精矿,以及硫品位为38.41%、含金13.92 g/t、含银163.90 g/t、硫回收率为14.16%、金回收率为23.71%、银回收率为15.92%的硫精矿。  相似文献   

9.
本文对河北省铜尾矿的性质进行了详细的条件试验,最终确定采用铜硫混浮~分离的浮选工艺,实验室闭路试验得到铜品位17.75%、含金62.60 g/t,含银664.00 g/t,铜回收率为30.47%的铜精矿及硫品位40.53%、含金6.12 g/t,含银143.00 g/t,硫回收率为21.31%的硫精矿,其中金总回收率72.29%,银总回收率27.26%。为了回收其中的铁矿物,对浮选尾矿采用磁选工艺,得到了TFe品位65.00%的合格的铁精矿,达到了尾矿资源综合回收的目的,为同类型的尾矿资源提供技术参考。  相似文献   

10.
针对某复杂嵌布的高硫低钼铜多金属矿石进行了综合回收试验研究。在原矿入选品位含Cu 0.57%、含Mo 0.019%、含S 8.48%的条件下,采用铜钼混合浮选—粗精矿再磨精选—铜钼分离浮选—混浮尾矿选硫的工艺流程,获得了铜精矿含铜品位18.06%、铜回收率78.88%,钼精矿含钼品位45.98%、钼回收率60.22%,以及硫精矿含硫品位46.86%、硫回收率88.35%的选别指标,实现了铜钼硫多种资源的综合回收。  相似文献   

11.
辽宁葫芦岛地区某金、银品位较高的铜铅锌多金属硫化矿石结构构造复杂,铜、铅、锌分离难度较大。为高效开发利用该矿石,按优先混浮铜铅-混浮精矿铜铅分离-混浮尾矿抑硫浮锌的原则流程对该矿石进行了系统的选矿试验。结果表明,采用2粗1扫2精铜铅混浮、1粗2扫3精铜铅分离、1粗2扫2精选锌、中矿顺序返回的闭路流程处理该矿石,最终获得了铜、金、银品位分别为20.88%、2.37 g/t、1 808 g/t,铜、金、银回收率分别为85.72%、46.27%、22.46%的铜精矿,铅、金、银品位分别为63.13%、0.99 g/t、5 973 g/t,铅、金、银回收率分别为80.00%、19.57%、75.16%的铅精矿,锌、金、银品位分别为55.96%、0.35 g/t、37.80 g/t,锌、金、银回收率分别为84.21%、10.47%、0.72%的锌精矿,较好地实现了铜、铅、锌的分离回收。  相似文献   

12.
复杂难选铜铅锌银多金属硫化矿选矿工艺研究   总被引:6,自引:2,他引:4  
陕西某铜铅锌银多金属硫化矿铜、铅、硫共生关系非常密切,且相互交代形成不同的包裹形式,针对该矿石特点,采用铜、铅、硫部分混合浮选,混合精矿再磨脱硫,用TZ-10抑铜浮铅,使铅、锌、铜、硫、银得到最大限度的回收,获得铅精矿含铅55.81%、铅回收率73.31%,锌精矿含锌57.33%、锌回收率83.42%,硫精矿含硫41.76%、硫回收率45.92%,铜精矿含铜9.84%、含银1660g/t、铜回收率57.14%、银总回收率69.75%的浮选指标。为该多金属硫化矿提供一套经济合理、技术可行的工艺流程,充分利用矿山资源,使矿山效益最大化。  相似文献   

13.
以云南某铜金多金属矿为研究对象,探索了金在与其伴生的硫化矿、磁铁矿混合体系中的选矿特性及载体矿物对其选矿指标的影响。依据金在该矿石中的赋存状态、嵌布特征及其载体矿物的多样性等特点,采用了优先选铜再选硫,然后磁选铁矿物的工艺流程。通过精细化调控工艺参数,在最佳的综合条件下,获得的铜精矿铜品位为18.63%、含金63.24g/t,铜回收率为88.67%,金在铜精矿中的分布率为67.06%;硫精矿硫品位为47.86%、含金2.41g/t,硫回收率为86.16%,金在硫精矿中的分布率为15.08%;铁精矿铁品位为59.55%、含金1.20g/t,铁回收率为38.22%,金在铁精矿中的分布率为10.51%,为技术经济指标的提升和工艺改进提供了理论依据。  相似文献   

14.
针对某铜铅浮选尾矿含有金银锌硫等有价组分,可综合回收利用。但由于矿石中锌含量较低,主要以铁闪锌矿形式存在,同时硫含量较高,因此难以获得品质较好的锌精矿,导致产品销售价格较低,选矿经济效益得不到有效发挥。为增加企业经济效益,对该尾矿进行了选矿试验,旨在对矿石中的低品位锌进行有效回收,同时回收矿石中的伴生组分金银,为选厂进行生产改造提供技术依据。铜铅尾矿锌品位为0.39%,金银含量分别为0.77、10.15 g/t,试验采用锌硫混选—锌硫分离工艺,通过添加含锌矿物的新型环保活化剂X-46和硫铁矿的选择性抑制剂BK526,在最佳的工艺条件下,闭路试验获得了锌精矿锌品位为46.27%、锌作业回收率为80.35%,含金8.24 g/t、含银103 g/t;硫精矿硫品位为46.54%、硫作业回收率为87.63%,含金3.00 g/t、含银29.80 g/t的理想指标。伴生组分金银在锌、硫精矿中得到了有效富集。  相似文献   

15.
山西某含金多金属硫化矿石中的主要金属矿物为银金矿、黄铁矿,其次为闪锌矿、方铅矿,黄铜矿等少量;脉石矿物主要为石英,其次为钾长石、绢云母等。金主要以银金矿独立矿物的形式存在,银主要以含银硫化物形式存在,铅主要以方铅矿形式存在,锌主要以闪锌矿形式存在,黄铁矿作为金、银的主要载体矿物之一,其粒度较粗。现场采用碱性环境下优先混浮金铅,再浮选锌的流程回收金、银、铅、锌,不仅金回收率较低,且铅、锌精矿互含严重。为确定该矿石的高效、合理选矿工艺进行了选矿试验。结果表明,矿石在磨矿细度为-0.074 mm占65%的情况下,采用尼尔森选矿机重选选金,重选尾矿偏碱性环境下1粗1精1扫金铅混浮,金铅混合精矿1次浮选分离,混浮尾矿1粗2精1扫浮选选锌,中矿顺序返回流程处理,最终获得金品位为264.53 g/t、含银1 042.50 g/t、金回收率为49.67%、银回收率为5.67%的重选砂金,金品位为42.35 g/t、含银998.36 g/t、含铅21.31%、金回收率为24.78%、银回收率为16.93%、铅回收率为23.61%的浮选金精矿,铅品位为59.61%、含金23.10%、含银3 745.20 g/t、铅回收率为63.08%、金回收率为12.91%、银回收率为60.68%的铅精矿,以及锌品位为46.35%、锌回收率为88.21%的锌精矿,较好地实现了金、铅、锌、银的分离与回收。浮选前增设尼尔森选矿机回收金和更弱的碱性环境、更高效的锌矿物抑制剂TQ11是实现金高效回收、解决铅锌精矿互含问题的关键。  相似文献   

16.
某硫锌型深海多金属硫化物锌、硫品位分别为20.44%和36.6%,贵金属金、银分别为6.89g/t和141g/t。根据矿石性质,通过硫(自然硫)-锌的优先浮选工艺,先获得自然硫精矿,再获得锌精矿。闭路流程可获得硫品位70.36%、硫回收率23.09%、锌品位14.61%、锌回收率8.34%的自然硫精矿,以及锌品位49.90%、锌回收率85.56%的锌精矿。锌总回收率93.90%。对浮选尾矿进行氰化浸出,样品中的金、银元素选冶总回收率可分别达到83.3%和86.3%左右。  相似文献   

17.
云南某含银高硫铜矿,矿石中矿物组成较为复杂,目的矿物硫化铜矿物、硫化铁矿物嵌布粒度不均匀且多数较细,银载体矿物分散。在矿石性质研究的基础上进行了选别流程对比实验研究。结果表明,采用优先浮选获得了铜品位21.60%、银品位602.84 g/t及铜回收率89.30%、银回收率54.39%的铜精矿,硫品位45.60%及硫回收率89.79%的硫精矿;采用混合浮选获得了铜品位21.24%、银品位598.42 g/t及铜回收87.38%、银回收率54.01%的铜精矿,硫品位46.38%及硫回收率87.92%的硫精矿。相对于混合浮选流程,在铜精矿中银回收率相近的情况下,优先浮选流程更充分的回收了矿石中的铜、硫,且流程稳定可靠及适合生产应用,可作为选矿工艺技术依据。  相似文献   

18.
龚哲彦 《现代矿业》2020,36(9):110-113
针对某地磁铁矿石含硫(339%)较高,磁选容易造成铁精矿含硫超标的问题,进行降硫选铁及综合回收伴生有价组分的选矿试验研究,最终推荐浮选—磁选联合工艺流程,获得了铜品位1330%、金品位425 g/t、银品位107 g/t,铜回收率5125%的合格铜精矿;硫品位2960%、硫回收率7974%的合格硫精矿;全铁品位6705%、硫含量016%、全铁回收率6200%的合格铁精矿;该工艺流程合理,浮选除硫可有效地降低铁精矿中的硫含量,并且综合回收了铜和硫,提高了该矿山的经济价值。  相似文献   

19.
为获得高品质的银铅精矿,对某高硫银铅锌多金属矿石分别进行异步浮选—粗精矿全部再磨浮选、异步快速浮选—中矿集中再磨浮选和分段分速异步浮选—粗精矿部分再磨浮选试验。试验结果表明:在磨矿细度为-0.074 mm 70%的情况下,分段分速异步浮选—粗精矿部分再磨浮选优于其余两种工艺,浮选流程获得的银铅精矿银品位621 g/t、银回收率54.18%,铜品位0.84%、铜回收率34.62%,铅品位62.78%、铅回收率89.42%,锌品位6.45%、锌回收率5.83%。  相似文献   

20.
西藏某斑岩型铜矿中含铜1.10%~1.30%、含金0.04~0.08g/t,矿石中铜矿物以辉铜矿为主、黄铜矿次之,铜矿物嵌布粒度细、且嵌布关系复杂,金主要与铜矿物和黄铁矿伴生,原有工艺铜精矿中的金难以富集到1g/t以上,且铜回收率偏低。为高效综合回收矿石中的铜金资源,开发了低碱条件下"铜硫部分混合浮选"新工艺,并以新型捕收剂ZH-01为铜硫混选的捕收剂,铜硫混选粗精矿经一次精选后,获得合格的铜精矿。实验室小型闭路试验结果表明,在磨矿细度-74μm含量占70%、原矿含铜1.21%、含金0.06g/t的条件下,获得了含铜35.27%、铜回收率94.12%,含金1.11g/t、金回收率56.23%的铜精矿。与现场工艺相比,新工艺不仅提高了铜的回收率,伴生金也得到了综合回收,实现了矿石中铜金的高效综合回收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号