首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
以Hollandite型氧化物Pb_(2-x)Mn_8O_(16)为载体,Na BH4、甲醛和乙二醇为还原剂,采用液相沉积还原法制备了3种载Pd催化剂,并利用X射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)等技术对催化剂进行表征,分析了不同还原剂对催化剂微观结构、氧化还原性质及其在苯酚氧化羰基化反应中催化性能的影响。实验结果表明,Na BH4的强还原性破坏了载体Pb_(2-x)Mn_8O_(16)的结构;与甲醛相比,以乙二醇为还原剂所得的纳米钯粒子在载体上的分布更加均匀,Pd粒子的平均尺寸为4.1 nm。其中采用乙二醇为还原剂制备的Pd/Pb_(2-x)Mn_8O_(16)催化合成碳酸二苯酯的收率最高,达15.6%。  相似文献   

2.
传统的净化方法难以实现低成本、高效、选择性净化含磷化氢尾气,这限制了含磷化氢尾气的资源化技术的实现.文章利用自主筛选的催化剂,在实验室进行了Pd2 浓度、Cu2 浓度、反应温度、混和气氧体积分数、磷化氢质量浓度、混合气流速等因素对Pd(II)-Cu(II)水溶液净化含磷化氢气体影响的研究.实验结果表明,Pd(II)-Cu(II)催化剂在低温(22-73 ℃)、常压下(100 kPa)对质量浓度为850 mg/m3磷化氢气体净化效率可高达100%.并且催化剂稳定性随催化氧化反应温度的升高而降低,随被净化混和气中氧体积分数、吸收液中Pd2 浓度及Cu2 浓度增大而增强;催化氧化净化效率随混和气中磷化氢质量浓度升高而降低,随被净化的混和气流速降低而升高.  相似文献   

3.
Pd(Ⅱ)-Cu(Ⅱ)催化氧化净化PH_3的动力学实验   总被引:1,自引:0,他引:1  
传统的净化方法难以实现低成本、高效、选择性净化含磷化氢尾气,这限制了含磷化氢尾气的资源化技术的实现。文章利用自主筛选的催化剂,在实验室进行了Pd2+浓度、Cu2+浓度、反应温度、混和气氧体积分数、磷化氢质量浓度、混合气流速等因素对Pd(II)-Cu(II)水溶液净化含磷化氢气体影响的研究。实验结果表明,Pd(II)-Cu(II)催化剂在低温(22—73℃)、常压下(100 kPa)对质量浓度为850 mg/m3磷化氢气体净化效率可高达100%。并且催化剂稳定性随催化氧化反应温度的升高而降低,随被净化混和气中氧体积分数、吸收液中Pd2+浓度及Cu2+浓度增大而增强;催化氧化净化效率随混和气中磷化氢质量浓度升高而降低,随被净化的混和气流速降低而升高。  相似文献   

4.
采用水热法制备了锆掺杂的Ce0.8Zr0.2O2-δ复合氧化物。采用X射线衍射、激光Raman光谱、扫描电子显微镜、高分辨透射电子显微镜、X射线光电子能谱和H2程序升温还原等方法对样品进行了表征,并评价了其对CO氧化反应的催化性能。结果表明,以十六烷基三甲基溴化铵(CTAB)为形貌控制剂制得的棒状样品除了暴露稳定的(111)晶面,还优先暴露了活性较高的(220)晶面。而以柠檬酸(CA)为形貌控制剂制得的球状样品,只暴露稳定的(111)晶面。棒状样品表现出较好的低温还原性能及CO氧化活性,这可能与其暴露活性位较发育的(220)晶面和具有较高的Ce3+浓度及氧缺位浓度相关。  相似文献   

5.
采用液相原位还原法制备Pd/α-Al2O3催化剂,并应用于CO氧化偶联合成草酸二甲酯反应。对比实验发现,甲醛液相原位还原法制得的Pd基催化剂具有优异的催化活性,当Pd负载质量分数低至0.1%时,催化剂仍表现出较高的活性和稳定性。采用XRD和BET等对催化剂及载体进行表征,结果表明,催化剂活性与载体的比表面积、孔容和孔径没有必然联系。通过TEM发现,0.1%-Pd/α-Al2O3催化剂中的主要活性组分Pd具有较小的颗粒和较高的分散性,通过HRTEM发现,液相原位还原法制备的催化剂能够有效暴露出Pd(111)晶面。  相似文献   

6.
采用溶剂热-热回流两步法制备了金属有机框架材料负载Pd催化剂(Pd/HKUST-1),对催化剂进行表征,考察了其催化苯酚氧化羰基化合成碳酸二苯酯(DPC)反应性能及稳定性。结果表明:Pd物种在HKUST-1载体上的分散性好,平均粒径为2.3 nm;当Pd、苯酚的物质的量比n(Pd)/n(BP)为1/425时,在100℃反应8 h,苯酚转化率为53.8%,DPC选择性为71.3%;回收Pd/HKUST-1再次使用时催化性能降低,主要是由于Pd物种流失造成的。Pd/HKUST-1具有较大的比表面积,一方面增大了反应物分子的内扩散阻力,降低了生成DPC的可能性,导致其选择性较低;另一方面,在反应中流失的Pd组分可再次沉积在催化剂表面,因此Pd/HKUST-1具有一定的稳定性。  相似文献   

7.
Ni-SiC纳米复合镀层耐高温氧化性能的分析   总被引:4,自引:0,他引:4  
对Watts镀镍层以及添加纳米SiC的复合镀镍层的耐高温氧化性能进行了比较分析.热重和差示扫描量热试验表明,添加纳米SiC并不能明显改善镀层的耐高温氧化性能,但添加15 g/L的纳米SiC可以提高复合镀层晶面结构的热稳定性,将(111)晶面向(200)晶面转化的温度由原来的325 °C提高到365 °C.X射线衍射分析表明,添加纳米SiC会改变镀镍层的结晶取向,由原来以(200)为主,(111)为辅转变为以(111)为主,(200)为辅.经400 °C高温氧化处理后镀层的晶面结构以(200)为主,(111)为辅;经800 °C高温氧化出现氧化产物NiO和Fe3O4.  相似文献   

8.
以Pd(OAc)_2和Al(OTf)_3为催化剂,研究非氧化还原金属离子加速Pd(Ⅱ)催化丁香酚双键异构化的反应。对不同的非氧化还原金属离子进行筛选,确定选用Al(OTf)_3为非氧化还原金属离子催化剂,采用单因素结合正交实验的方法对丁香酚的双键异构化工艺进行优化。结果表明,最佳工艺条件为:反应温度50℃,反应时间6 h,n[Al(OTf)_3]∶n[Pd(OAc)_2]=2∶1,Pd(OAc)_2和Al(OTf)_3的总用量为3.45%(以丁香酚的质量分数计)。在此条件下,反应稳定性较好,产物得率可达96.3%,其中反式异丁香酚的选择性为89.5%,产品香气较为纯正。采用IR、GC-MS、和~1H NMR等对产物进行了分析与表征。  相似文献   

9.
《应用化工》2022,(3):474-477
以Pd(OAc)_2和Al(OTf)_3为催化剂,研究非氧化还原金属离子加速Pd(Ⅱ)催化丁香酚双键异构化的反应。对不同的非氧化还原金属离子进行筛选,确定选用Al(OTf)_3为非氧化还原金属离子催化剂,采用单因素结合正交实验的方法对丁香酚的双键异构化工艺进行优化。结果表明,最佳工艺条件为:反应温度50℃,反应时间6 h,n[Al(OTf)_3]∶n[Pd(OAc)_2]=2∶1,Pd(OAc)_2和Al(OTf)_3的总用量为3.45%(以丁香酚的质量分数计)。在此条件下,反应稳定性较好,产物得率可达96.3%,其中反式异丁香酚的选择性为89.5%,产品香气较为纯正。采用IR、GC-MS、和1H NMR等对产物进行了分析与表征。  相似文献   

10.
张鲁湘 《工业催化》2022,30(3):74-76
采用HCl+H_(2)O_(2)混合溶液浸泡废旧含钯催化剂Pd/α-Al_(2)O_(3),滤掉氧化铝球颗粒,在滤液中加入水合肼还原,形成Pd单质沉淀,过滤,加弱酸除去杂质,再过滤,滤饼在N_(2)保护下80℃烘干,得到高纯单质Pd。该方法成本低,相对于王水法更环保、高效,Pd回收率>99.99%,纯度>99.5%。  相似文献   

11.
The oxidation of CO on Pd(111) and Pd70Au30(111) has been studied under pressures upto 100 Torr. Gold is found to decrease the surface activity by inhibiting oxygen dissociation. For a sufficient conversion time depending on the CO coverage and the surface identity, a dramatic boost of activity occurs. This is ascribed to a switch from CO-induced inhibition of O2 adsorption to a regime determined by CO adsorption. The other kinetic features are explained by oxidation of palladium and adsorption-induced restructuring of the surfaces.  相似文献   

12.
Modified boron-doped diamond (BDD) surfaces supporting different, carefully selected types of metal nanoparticles on different types of crystal facets were fabricated via a self-assembly method. A hydrogen plasma-treated BDD surface was treated with UV/ozone for 10 s followed by immersion in a Au nanoparticle (AuNP) solution to fabricate a BDD surface selectively and densely supporting AuNPs on the (111) facet (AuNP111-BDD). The AuNP111-BDD sample was then immersed in H2PtCl6/ascorbic acid or H2PdCl4/sodium citrate to cover the AuNP surface with Pt or Pd (Pt/AuNP111-BDD or Pd/AuNP111-BDD). These samples were treated with UV/ozone for 40 s followed by re-immersion in the AuNP solution to immobilize AuNPs on the (100) facets (Pt/AuNP111-AuNP100-BDD or Pd/AuNP111-AuNP100-BDD). The metal nanoparticles supported on the BDD surface were confirmed by cyclic voltammetry to be electrochemically active. The crystal-facet-selective support of the metal nanoparticles was also confirmed by two-dimensional elemental mapping via field emission Auger electron spectroscopy. The macro procedures used for the crystal-facet-selective immobilization of the AuNPs was reproducible, and this technique should be applicable to the creation of a new class of advanced materials in such fields as optics, electronics, sensing, and (electro)catalysis.  相似文献   

13.

Abstract  

The reaction between gas-phase ethylene and adsorbed acetate species on Pd(100)-p(2 × 2)-O and Pd(100)-c(2 × 2)-O surfaces is studied using infrared spectroscopy. It is found that acetate species are removed more rapidly by gas-phase ethylene on oxygen-covered Pd(100) than on Pd(111). However, in contrast to reaction on Pd(111), where vinyl acetate monomer (VAM) formation is detected by infrared spectroscopy, only CO is found on oxygen-covered Pd(100) surfaces. In the case of Pd(111), it has been shown that VAM is stabilized on the crowded, ethylidyne-covered surface. Since ethylidyne species do not form on Pd(100), any VAM that is formed can thermally decompose. The reaction shows an isotope effect when C2D4 is substituted for C2H4, indicating the hydrogen is involved in the rate-limiting step. Based on the surface chemistry found for VAM on a Au/Pd(111) alloy, where 30 to 40% ML of gold inhibits VAM decomposition, it is suggested that the VAM formation rate will increase on (100) alloy surfaces, while it will decrease at higher gold coverages since acetate formation is inhibited.  相似文献   

14.
The catalytic properties of (111) and (110) Pd50Cu50 single-crystal surfaces have been tested for the 1,3-butadiene hydrogenation reaction, and compared to those of pure Pd having the same surface orientations. The Pd50Cu50(111) single crystal has the highest activity; it is also more effective than the corresponding pure Pd face. The activity of the Pd50Cu50(110) is less; nevertheless, it is practically as effective as the Pd(110) crystal, which is itself more effective than the (111) oriented Pd sample. The results are discussed in terms of both geometric and electronic effects. They are associated on one side to the dilution by the inactive Cu surface atoms, and on the other side to the electronic interaction between the outer Pd surface atoms and the surrounding Cu atoms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Oxygen reduction was studied on palladium, cadmium and zinc ad-atom modified single crystal Au(111) electrodes. The electrodes were modified by underpotential deposition process and their activity towards oxygen reduction was studied in alkaline media by voltammetry. The reduction peaks obtained were compared with those of bare Au(111), Pd disc and bulk deposited Cd electrodes. Enhanced catalytic activity of the Au(111) electrode in the presence of Pd, Cd and Zn ad-layer can be attributed to a change in surface charge and energy by ad-layer formation. In oxygen saturated medium a well defined sharp reduction peak was observed at ?0.12 V for 1/5 ML Pd ad atom modified Au(111) electrode while it was positioned at ?0.18 V on a Pd disk electrode. The best shift in reduction peak potential was obtained with 2/5 ML Pd ad atom modified Au(111) electrode with similar current density of Pd disc electrode.  相似文献   

16.
The decomposition of formic acid on Zn/Pd(111) was studied using Temperature Programmed Desorption and High Resolution Electron Energy Loss Spectroscopy. On Pd(111), HCOOH decomposes via both dehydration and dehydrogenation pathways to produce CO, CO2, H2 and H2O. Small amounts of Zn (<0.1 mL) incorporated the Pd(111) surface were found to increase the stability of formate species and alter their decomposition selectivity to favor dehydrogenation, resulting in an increase in CO2 production. This difference in reactivity appears to be caused by relatively long range electronic interactions between surface Pd and Zn atoms and may be important in Pd/ZnO methanol steam reforming catalysts which exhibit high selectivities to CO2 and H2.  相似文献   

17.
We have studied the influence of oxygen on the structure and morphology of a Pd/Fe3O4 model catalyst using molecular beam (MB) methods, IR reflection absorption spectroscopy (IRAS) and scanning tunneling microcopy (STM). The model catalyst was prepared under ultrahigh vacuum (UHV) conditions by physical vapor deposition (PVD) and growth of Pd nanoparticles on an ordered Fe3O4 thin film on Pt(111). It is found that surface oxides are formed on the Pd nanoparticles even under mild oxidation conditions (temperatures of 500 K and effective oxygen partial pressures of around 10−6 mbar). These surface oxides are initially generated at the Pd/Fe3O4 interface and, subsequently, are formed at the Pd/gas interface. The process of formation and reduction of surface and interface oxides on the Pd particles is fully reversible in that all oxides formed can be fully reduced. As a result, the oxide phase acts like a storage medium for oxygen during oxidation reactions, as probed via CO oxidation. The process of surface and interface oxidation is directly connected with the onset of a non-reversible sintering process of the Pd particles. It is suggested that this sintering process occurs via a mobile Pd oxide species, which is stabilized by interaction with the Fe3O4 support. The restructuring is monitored via STM and IRAS using CO as a probe molecule. In addition to a decrease in particle density and Pd surface area, a reshaping of the particles occurs, which is characterized by the formation of well-ordered crystallites and with a relatively large fraction of (100) facets. After a few oxidation/reduction cycles at 500 K, the sintering process becomes very slow and the system shows a stable behavior under conditions of CO oxidation.  相似文献   

18.
The influence of Mn deposited on a Pd(100) surface on the adsorption, dissociation and desorption properties of NO has been studied using infrared reflection absorption spectroscopy (IRAS), temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). On the Mn/Pd(100) surface, only the NO adsorbed on the Pd was observed at 320 K. Thermal dissociation of NO did not occur on the clean Pd(100) surface; it did occur, however, on the Mn/Pd(100) surface at 320 K. A Pd-Mn alloy was formed by deposition of Mn onto the Pd(100) surface; the formation of the Pd-Mn alloy was correlated with the activity of NO dissociation, assuming that it was the active site for this dissociation. The oxygen produced from the dissociation of NO was found to destroy the Pd-Mn alloy, forming MnOx. No desorption of oxygen from MnOx on Pd(100) was observed below 1200 K.  相似文献   

19.
The infrared (IR) chemiluminescence technique was applied to steady-state CO oxidation by NO on Pd(111) and Pd(110). From a comparison of IR emission spectra of CO2 between the CO + NO and CO + O2 reactions, it was found that the vibrational energy states of CO2 in the CO + NO reaction were similar to those in the CO + O2 reaction. This indicates that the reaction path of CO2 formation in CO + NO is the same as that in CO + O2, although the vibrational states are very dependent on the surface structure.  相似文献   

20.
A simple molecular beam instrument (MBI) was fabricated for measuring the fundamental parameters in catalysis such as, sticking coefficient, transient and steady state kinetics and reaction mechanism of gas/vapor phase reactions on metal surfaces. Important aspects of MBI fabrication are given in detail. Nitric oxide (NO) decomposition and NO reduction with carbon monoxide (CO) on Pd(111) surfaces were studied. Interesting results were observed for the above reactions and they support the efficiency of the MBI to derive the fundamental parameters of adsorption and catalysis. Sustenance of CO oxidation at 400 K is dependent mostly on the absence of CO-poisoning; apparently, CO + O recombination is the rate determining step ≤400 K. NO adsorption measurements on Pd(111) surface clearly indicating a typical precursor kinetics. Displacement of the chemisorbed CO by NO on Pd(111) surfaces was observed directly with NO + CO beams in the transient kinetics. It is also relatively easy to identify the rate-determining step directly from the MBI data and the same was demonstrated for the above reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号