首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
针对机床电主轴在高速运转时内部发热造成的热误差问题,对比BP、RBF神经网络方法,采用一种基于GMDH神经网络的电主轴热误差建模方法。以某型号高速数控机床电主轴为研究对象进行热误差实验,通过利用温度传感器和电涡流位移传感器分别采集主轴温度和轴向热位移数据,运用数据处理群集方法(GMDH)建立主轴轴向热误差预测模型。经过数据对比表明:该方法较传统的神经网络方法具有学习速度快、获得全局最优解、泛化性能好、拟合预测精度高等优点。  相似文献   

2.
为探究数控机床主轴温度场信息与主轴热误差之间的非线性映射关系,提出一种基于人工蜂群优化算法(ABC)与广义回归神经网络的主轴热误差预测模型。首先,使用热成像技术布置温度传感器,并利用K-medoids算法对温度测点进行聚类分组,使用灰色关联度分析方法计算温度与主轴热误差之间的相关程度,进而提取出最佳热敏感点;其次,引入调节因子优化ABC算法的寻优过程,使用改进后的ABC网络确定GRNN网络的最佳参数及光滑因子;最后,以三轴数控加工中心为研究对象,进行温度数据与热误差数据的采集,建立基于ABC-GRNN热误差预测模型并与优化前进行比较。热误差实验结果表明,K-medoids算法与灰色关联分析相结合,有效避免了温度测点之间的多重共线性;ABC-GRNN模型可以更准确地预测出主轴各项误差值。  相似文献   

3.
准确可靠的热误差预报模型,对提高数控机床的加工精度尤为重要。针对数控加工的过程数据呈现出多时段、多变量、三维特性,基于时间片矩阵的思想,在过程数据标准化处理的基础上,采用偏最小二乘方法提取时间片矩阵与热误差在高维空间的预测关系并进行降维;在低维特征空间中基于K-means算法实现时间片预测模型的聚类,以便于加工过程时段特性的分析和知识发现,藉此构建热误差预报模型。仿真实验结果表明,与BP热误差建模方法相比,所提方法的预测精度、泛化能力均显著提高,为数控机床的热误差预测研究提供一种新思路的同时,也给出行之有效的解决方法。  相似文献   

4.
热误差作为制约数控机床加工精度的关键因素,在重型数控机床上表现得尤为明显。以重型落地镗铣床为例,根据热误差测量试验数据,分析重型数控机床温度场特性,并基于兼顾相关系数和欧式距离的系统聚类准则,对温度测点系统进行优化,以减小温度测点间共线性。通过优化温度测点,采用多元线性回归分析,建立重型数控机床热误差预测模型。由现场试验可知,建立的热误差预测模型可将均方根误差控制在10μm以内,有效地提高了热误差预测精度。  相似文献   

5.
为了减小机床热误差温度测点数的不确定性、测点之间的多重共线性对预测模型精度及稳健性的影响,提出了一种综合系统聚类(SC)与灰色关联(GC)的测点优化及误差建模方法。以数控机床热误差实验为依据,基于系统聚类、灰色关联分析原理和文中提出的测点筛选原则,将温度测点的数量由20个减少为4个,建立了热误差温度测点优化模型并进行了优化计算。结果显示,此方法能有效降低测点之间的多重共线性,有利于优化模型的预测精度及泛化性能的均衡。  相似文献   

6.
魏弦 《机床与液压》2018,46(3):103-107
当实际工况与建模工况存在差异时,传统的热误差模型往往表现出较差的鲁棒性和预测精度,主要原因在于建模数据的局限性和模型的未建模动态。为了改善上述状况,提出了一种基于数据驱动的数控机床主轴补偿模型。此模型采用无模型自适应控制算法建模,结合机床运行中生成的数据(温度数据和误差数据)对热误差模型进行实时修正,使模型能快速适应新的加工工况,从而提高模型的鲁棒性。在一台数控车床主轴上进行了试验验证,结果表明:无模型自适应控制与多元回归模型比较,其标准差、最大残差和误差平方和分别提高了41%、62%和56%,此模型的鲁棒性和预测效果好。同时,此方法为大数据在机床主轴热误差补偿中的应用奠定了基础。  相似文献   

7.
为提高数控机床的运动性能和加工精度,提出了基于自然指数模型的机床定位误差建模方法.通过分析在不同温度条件下的定位误差变化规律,将定位误差分为几何误差和热误差两个部分,其中,几何误差部分可以采用多项式模型进行拟合,而对于热误差部分,则建立其与环境温度、机床关键构件温度之间的自然指数模型,从而描述了热误差和温度场之间的非线性变化规律.通过与传统的多元线性回归模型进行试验结果对比表明:基于自然指数模型的定位误差建模方法在任何温度条件下均可获得较高的预测精度,经过误差补偿,可以大幅提高机床精度.  相似文献   

8.
为减小热误差对数控机床加工精度的影响,提出基于GA-BP神经网络的机床热误差优化建模方法。阐述遗传算法(GA)和BP神经网络算法,介绍GA-BP神经网络模型的具体步骤,建立BP神经网络热误差预测模型和GA-BP网络热误差优化模型。运用MATLAB软件对两种模型进行实验仿真,结果表明:GA-BP神经网络的数控机床热误差优化建模方法具有建模时间短、预测精度高、收敛速度快等优点。  相似文献   

9.
热误差是影响数控机床加工精度的主因,为提高数控机床热误差模型的预测精度,提出了基于改进粒子群优化BP神经网络的数控机床热误差建模预测方法。针对BP易陷入局部最优、收敛速度慢,在标准粒子群算法的基础上,改进粒子的速度与位置更新策略,在此基础上优化BP神经网络的阈值和权值,并建立数控机床热误差预测模型;借助于MATLAB完成仿真实验,结果表明,与标准的BP神经网络和支持向量机相比,基于改进粒子群优化BP神经网络的数控机床热误差预测模型精度高、泛化能力强。  相似文献   

10.
单一工况条件下数控机床主轴热误差模型无法准确预测其它工况下的热误差。通过研究分析支持向量机回归的算法和参数的关系,提出一种经过遗传算法(GA)在多工况条件下优化的支持向量机(SVM)的建模方法。以一台数控车床为研究对象,进行热误差测量实验,利用电涡流位移传感器和温度传感器同步测量机床主轴两个方向热误差和温度变化数值,获取两种工况的建模数据。运用遗传算法对SVM的惩罚函数、核函数参数和不敏感损失函数进行多工况条件下的优化选择,建立机床主轴热误差补偿模型。通过热误差建模实验验证,该方法在工况一的残差为0.838μm,工况二的残差为0.653μm,在保持较高预测精度的同时,能在两种工况下进行有效的热误差预测,使热误差补偿更适合实际加工环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号