首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微机控制的高灵敏度激光光声光谱仪研究   总被引:8,自引:0,他引:8  
用计算机对基于CO CO2 激光器的光声光谱仪进行自动控制和数据处理 ,使得该光谱仪长时间连续自动测量及对多种气体成分同时测量成为可能 ,并进一步提高了光谱仪的检测灵敏度和长期运行的可靠性。系统性能检测实验结果表明 ,对乙烯气体浓度的检测极限可达到 14× 10 - 1 2 ;系统长期测量精度优于 2 %。利用该系统对苹果和樱桃西红柿果实在有氧、无氧和无氧后乙烯释放量的变化进行了长时间的连续监测  相似文献   

2.
为了提高13CO2值的FTIR检测准确度,保证不同检测系统检测数据之间的兼容性,需要对测量值进行标准气体校准。首先研究了13CO2值的标准气体校准方法,重点研究了浓度直接校准法和13CO2值经验校准法的校准过程,在此基础上对13CO2值的FTIR测量值进行了校准修正。校准修正结果表明:校准后13CO2值的测量准确度有明显提高,浓度直接校准法和13CO2值经验校准法的准确度分别提高5.5和6.4倍。该研究有助于提高FTIR技术的检测准确度和不同系统之间检测值的兼容性。  相似文献   

3.
本文介绍了一种低功耗的基于单片机控制的CO气体检测报警系统.它能够利用系统内化学传感器,对空气中CO气体的浓度进行有效的测量,精度为1ppm.当CO气体浓度达到设定值时,该装置会自动进行声光报警.  相似文献   

4.
CO2和H2O是大气中两种重要的温室气体,对生态系统中CO2和H2O的浓度进行在线监测可用于分析环境及气候变化。选择CO2和H2O的近红外吸收谱线,利用可调谐半导体激光吸收光谱技术结合自动增益调节技术设计了开放式CO2和H2O在线检测仪。在中国科学院禹城综合试验站进行了1238m光程下,20Hz时间分辨率的连续观测实验,结果表明自动增益调节解决了开放光路检测时探测信号幅度大幅变化问题。监测点的CO2浓度具有白天低,夜间高的日变化周期性。与同场地涡度相关系统的LI-7500对比测量,数据一致性较好。该检测技术灵敏度高、响应速度快、免采样,实现了大尺度区域生态系统中CO2和H2O浓度的稳定、连续、在线检测。  相似文献   

5.
机动车运行工况复杂多变, 排放的尾气成分浓度范围跨度大。利用常规光学方法检测尾气中污染成分的浓 度时, 由于受限于光学气池的结构固定和系统对光电微弱信号的检测极限, 因此待测气体的量程和精度范围都受到 很大限制。基于朗博比尔定律, 在待测气体浓度变量上增加指数因子修正, 可以在不降低测量精度的同时, 实现尾气 CO、 CO2 大量程检测。用标准气体对便携式机动车尾气检测装置进行标定实验, 结果表明, 传统的线性修正方法得 到的 CO 拟合度为 0.988, CO2 拟合度为 0.998; 而增加了非线性修正因子后得到的 CO 拟合度为 0.999, CO2 拟合度为 0.999。进一步外场对比实验表明, 修正后的仪器测量结果与同类先进仪器的一致性较好, 柴油车实验拟合度为 0.93, 汽油车拟合度为 0.95, 验证了非线性修正方法的必要性和实用性。  相似文献   

6.
吕淑媛  杜绍勇 《红外与激光工程》2018,47(11):1117002-1117002(6)
为了实现全光纤型高灵敏度气体在线检测系统,以空芯光子晶体光纤为传感气室,利用CO2气体分子在1 572.48 nm附近吸收谱以及虚拟仪器LabVIEW平台搭建了双光路差分CO2气体近红外检测实验系统。实验中所用空芯光子晶体光纤长度为1.8 m,通过对其两端同时充气,提高了系统响应速度,0.1 MPa下充气过程仅需100 s左右。以标准浓度CO2气体对该系统进行了标定,并对浓度2%、5%、10%和100%的CO2气体进行了测量,结果表明100 min内浓度检测相对误差不超过2%,标准差最大3.32%。气体吸收光程为1.8 m,系统检测灵敏度达到5.981 810-5 W/ppm。  相似文献   

7.
水汽吸收线分布于整个中红外波段,它的存在干扰红外光谱的定量分析.分析了水汽谱吸收对测量精度的影响.利用傅里叶变换红外光谱法分别测量了经过干燥处理的待测气体和未经干燥处理的待测气体,并分别对两次测量中CO、CO2、N2O和CH4浓度的测量精度及检测限进行了比较.实验表明:对样气进行干燥预处理可以提高测量精度和检测限.  相似文献   

8.
基于可调谐二极管激光吸收光谱(TDLAS)技术、波长调制技术和二次谐波检测方法,利用CO和CO2在1579 nm处的泛频吸收特征,结合改造后的单孔道吸烟机,建立了卷烟主流烟气逐口检测系统。实验结果表明:气体浓度与其二次谐波强度的线性度较好,系统响应速度较快,精度能达到检测要求,逐口检测稳定性、重复性和灵敏度均较好。同类型卷烟主流烟气中CO、CO2的逐口释放量除第1口之外,均呈递增趋势,CO2的逐口释放量和递增速率均比CO的大,且不同类型的卷烟遵循相同的规律。所建系统具有检测速度快、时间分辨率高、结构简单等优势,在卷烟烟气有害物质的快速检测领域具有较好的应用前景。  相似文献   

9.
智能化CO2/O2浓度,环境温度分析测试仪   总被引:1,自引:0,他引:1  
施德恒  黄宜军 《红外技术》1997,19(5):36-39,48
CO2/O2浓度、环境温度分析测试仪主要由浓度/温度探测系统、信号放大与处理系统及显示报警系统等部分组成。其中,CO2浓度的探测采用非色散红外吸收原理制作的微音电容式红外传感器;O2浓度的探测采用磁压式原理制作的氧量探测器;温度的探测则采用阻位随温度变化的厚膜白金测温电阻器。仪器采用模块式结构,测量灵敏度高。CO2浓度的检测范围为0~0.3%,精度优于±1%,响应时间小于15S;O2浓度的检测范围为0~25.0%,精度优于±1%,响应时间小于10S;温度的探测范围为-40~60℃,精度优于±0.5%,相应时间小于0.5s。  相似文献   

10.
赵晓虎  孙鹏帅  张志荣  王前进  庞涛  孙苗  庄飞宇 《红外与激光工程》2023,52(1):20220284-1-20220284-10
针对可调谐半导体激光吸收光谱技术(Tunable Diode Laser Absorption Spectroscopy,TDLAS)在煤矿、石油化工领域进行气体浓度检测时,遇到的高精度、宽动态范围需求,采用时分复用的方法,将直接吸收光谱技术(Direct Absorption Spectroscopy,DAS)和波长调制光谱(Wavelength Modulation Spectroscopy,WMS)技术的优势相结合,完成了高精度、宽量程和免标定多气体检测系统的设计。设计激光器的驱动为线性扫描输出和叠加不同高频调制扫描输出的周期信号,用于完成高低浓度反演算法的时分复用计算,通过实验优化选择检测气体的吸光度拐点,实现对气体浓度的高精度、宽量程检测。在室温和常压下,通过实验分别对CH4、CO和C2H2三种气体体积浓度进行检测,确定了两种算法最佳拐点吸光度约为0.026 cm-1。系统对CH4、CO和C2H2三种气体体积浓度的检测量程分...  相似文献   

11.
含碳温室气体浓度增加而加剧的温室效应是气候变化的主要原因。在线监测陆地生态系统中的CO2气体浓度并分析CO2通量,对了解局地气候及改善环境意义重大。设计了基于可调谐半导体激光吸收光谱技术的开放式CO2气体监测系统,于2010年4月在中国科学院封丘农业生态实验站进行了小麦田间CO2浓度的实时在线监测。连续监测结果表明:主要受植被光合作用的影响,田间CO2浓度具有明显的日变化规律,基本特点是白天浓度降低,夜间浓度升高。系统不需要气体采样、监测范围广、灵敏度高、响应时间快、调校简单,为农田环境的CO2浓度连续监测提供了有效的光学遥测方法。  相似文献   

12.
范凤英  宋增云 《中国激光》2012,39(2):215002-226
采用波长2μm附近的可调谐半导体激光二极管作为光源,结合多步吸收光程和光纤传输技术,通过激光吸收光谱直接测量方法对CO2分子浓度进行测量研究。实验在标定了激光器调谐范围内17条CO2吸收谱线的波长及相应的吸收带跃迁的基础上,研究了不同压力下纯CO2气体在2008nm附近的吸收光谱,由吸收信号随气体压力的变化关系得到低气压下实验装置的系统刻度因子。并进一步对样品气体的CO2浓度进行测量,测量给出CO2分子浓度为(2.754±0.145)×1016 cm-3,测量误差主要来源于目前实验中所使用的气压计的精度和读数局限性。该研究为气体分子浓度测量、同位素含量分析提供了一种光谱测量方法。  相似文献   

13.
用高温固相反应法,分别在H2和CO还原气氛 中制备了Sr1.94-xBaxMgSi 2O7:Eu2+0.01,Dy3+0.05长 余辉材料;研究了不同还原气氛对该系列荧光粉发光及余辉性能的影响。研究结果表明,随 着Ba2+浓度的增 加,荧光粉的晶体结构发生了改变,从而导致发射光谱和余辉光谱的峰位也发生了变化;CO 还原气氛下所制备荧光 粉的纯度要高于H2还原气氛下制备的样品,CO还原气氛下所制备荧光粉的余辉的初始亮 度和衰减都明显优于H2还原条件下所制备的样品,说明CO还原条件下更容易形成具有合 适浓度和深度陷阱的纯相荧光粉,有助于提高样品的余辉性能。  相似文献   

14.
自适应滤波在气体浓度测量系统中的应用   总被引:1,自引:1,他引:0  
根据Beer-Lambert定律,设计了一种基于光纤环形衰荡腔的双环路气体浓度测量系统。通过加入掺Er光纤放大器(EDFA)的全光自动增益反馈环,对EDFA的增益进行控制,可使衰荡时间大大延长,提高了系统的测量精度。研究了EDFA产生的放大自发辐射(ASE)噪声对系统测量精度的影响,采用自适应滤波方法对实验数据进行处理.通过对比试验论证了自适应滤波方法对提高系统测量精度的作用。分析了光在不同浓度的CO气体中的吸收特性以及衰荡时间与气体浓度的关系。  相似文献   

15.
    
硒化铅(PbSe)中红外探测器是CO气体检测仪中的核心部件,其响应率会随温度变化。对中红外探测器进行精确的温度控制 可以有效地改善系统稳定性,提高检测系统信噪比。首先分析了 PbSe探测器温度特性,根据CO检测仪设计指标提出了温控 系统的高稳定性要求;介绍了热电制冷器(Thermoelectric cooling, TEC)的工作原理;提出了基于温湿度控制芯 片ADN8830的温度控制方案并设计了输入电桥电路、TEC功放电路和PID补偿电路。根据设计方案搭建了实验测试系统 在室温环境下进行测试。测试结果表明:该温控系统应用于大气CO浓度检测仪器可在30 s内进入稳定状态,且1 min内 温度波动小于$\pm$0.02℃,优于CO检测仪1 ppm精度指标所需的温度波动不大于$\pm$0.1℃的要求。  相似文献   

16.
介绍了光声光谱技术的基本原理,采用英国凯尔曼(Kelman)有限公司研发的便携式变压器油中故障气体及微水检测装置Transport-X对SF6分解产物中的CO和SO2进行了检测,由于Kelman公司的检测装置是检测油中故障气体的,装置中没有SO2滤光片,因此根据HITRAN2004数据库重新选取了SO2气体的滤光片,并用新选择的SO2滤光片替换原来Kelman检测装置中的一个滤光片,来实现对SO2气体的检测。对不同浓度的CO和SO2气体进行了标定,结果表明光声信号与待测气体浓度之间具有良好的线性关系,CO和SO2气体的最低检测限分别达到了4.063ppm和9.540ppm。  相似文献   

17.
研究了星载积分路径差分吸收(IPDA)激光雷达系统工作波长与大气CO2 分子柱线浓度测量误差之间的关系,并优化波长以降低测量误差。首先介绍CO2 分子柱线浓度测量原理,理论分析并模拟仿真了系统随机误差、温度不确定性误差、频率不稳定性误差和水蒸汽干扰误差随激光雷达工作波长变化关系,优化工作波长使浓度测量总误差达到最小值。最终选定激光雷达on-line波长为6361.2250cm-1,off-line 波长为6 360.99 cm-1,并仿真计算得到温度不确定性为1 K、频率不稳定度为0.6 MHz 时,共导致的CO2 柱线浓度测量误差为0.58710-6,达到CO2 浓度测量精度110-6 的要求,为星载IPDA 激光雷达系统实现高精度CO2 柱线浓度探测优化系统参数提供了参考。  相似文献   

18.
以CO2为主的温室气体排放使得全球变暖,严重影响生态环境,2021年习近平主席在二十国集团领导人峰会上提出“中国将力争2030年前实现碳达峰、2060年前实现碳中和”,因此精确检测CO2气体浓度具有重要研究意义。由于CO2气体吸收谱线的展宽受到气体压力、温度等因素影响,导致TDLAS气体检测系统测量结果误差增大,因此本文结合HITRAN数据库仿真,提出了基于BP神经网络深度学习的CO2浓度反演算法和嵌入式实现方法,实现了对气体浓度的补偿,为嵌入式浓度反演算法设计提供理论依据。该算法可以移植到STM32F407中,经过测试,气体浓度的检测误差小,有效提升了气体检测精度,此方法同样适用于TDLAS型的其他气体检测应用场景中。  相似文献   

19.
差分吸收激光雷达探测大气CO_2精度分析   总被引:1,自引:0,他引:1  
为减小距离差分吸收激光雷达探测大气CO2浓度的探测误差,理论分析了探测精度,对差分吸收探测系统误差进行了数值分析,对基于1.6 μm光纤激光器相干探测CO2系统进行了仿真计算.结果表明:差分吸收截面越大,空间分辨率越低,回波信噪比越高,气体浓度的探测误差越小.当大气CO2的差分吸收光学厚度т为0.55时,相干探测系统具有最小误差变化百分比,此时探测精度最高.随着探测高度增大, 1.6 μm光纤激光相干探测系统精度逐渐降低,在1 km高度以内可以探测到34 ppm的大气CO2变化.  相似文献   

20.
基于FPGA研究了激光数字锁相放大技术,利用Lorentz线型模拟CO2吸收曲线,研究了调制系数、调制相位对吸收曲线二次谐波信号的影响,实现了调制参数的最优化。在此基础上,搭建了激光检测系统并对培养瓶内CO2浓度进行了顶空测量。结果表明:研制的顶空分析系统检测性能良好,输出二次谐波信号与CO2浓度的线性拟合度达99.98 %,测量范围为0~20 %,1σ检测限达到0.05 %。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号