共查询到18条相似文献,搜索用时 78 毫秒
1.
特征选择在文本分类中是非常必要的,这是由于它可以使分类更加有效与准确。本文根据特征选择方法χ2统计方法的不足,对χ2统计进行改进,并在支持向量机分类算法上进行实验。实验结果表明改进的方法可以提高分类的准确度。 相似文献
2.
为了克服传统的TF-IDF(Term Frequency Inverse Document Frequency)算法分类F1值低的缺陷,利用特征词在类内和类间的分布信息,提出一种改进的TF-IDF-dist算法。实验结果表明,改进的算法在不同特征维度下F1值平均提升3.2%,结合不同特征选择算法,F1值平均提升2.75%,并且对倾斜数据集有更强的适应性,表明本文算法在文本分类中的有效性。 相似文献
3.
随着Internet上文档信息的迅猛发展,文本分类成为处理和组织大量文档数据的关键技术.由于χ2统计量能很好地体现词和类别之间的相关性,因此成为特征选择中常用的评估函数.本文分析了χ2统计量在特征选择和分类决策阶段的性质,提出了一种新的基于χ2统计量的相似度定义,并结合基于两次类别判定的快速搜索算法,改进了传统的kNN算法.实验结果显示基于χ2统计量的改进kNN文本分类算法能大大减少kNN算法的分类时间,并提高了kNN算法的准确率和召回率. 相似文献
4.
特征选择是当今研究领域的一个热点,尤其是文本分类领域中的热点。针对χ2统计方法的两个缺陷:降低了低频词的权重和提高了很少在指定类中出现但普遍存在于其他类的特征在该类中的权重,对χ2统计方法进行改进,并通过做模拟和对比实验,对比改进前后的方法对文本分类的影响。在模拟和对比实验中,改进后方法的分类效果要好于传统的方法。 相似文献
5.
自动文本分类就是在给定的分类体系下,让计算机根据文本的内容确定与它相关联的类别。特征选择作为文本分类中的关键,困难之一是特征空间的高维性,因此寻求一种有效的特征选择方法,降低特征空间的维数,成为文本分类中的重要问题。在分析已有的文本分类特征选择方法的基础上,实现了一种组合不同特征选择方法的多特征选择方法,应用于KNN文本分类算法,实验表明,多特征选择方法分类效果比单一的特征选择方法分类效果有明显的提高。 相似文献
6.
基于多特征选择的中文文本分类 总被引:1,自引:0,他引:1
自动文本分类就是在给定的分类体系下,让计算机根据文本的内容确定与它相关联的类别。特征选择作为文本分类中的关键,困难之一是特征空间的高维性,因此寻求一种有效的特征选择方法,降低特征空间的维数,成为文本分类中的重要问题。在分析已有的文本分类特征选择方法的基础上,实现了一种组合不同特征选择方法的多特征选择方法,应用于KNN文本分类算法,实验表明,多特征选择方法分类效果比单一的特征选择方法分类效果有明显的提高。 相似文献
7.
《计算机应用与软件》2014,(8)
为了提高中文文本分类的效率与精度,设计一种新型的分类器。该分类器采用基于语料库的正向扫描统计分词。在词频统计阶段,采取训练阶段的按类别统计和测试阶段的按文章不同区域统计的方法;为了更好地选择特征词,提出了频度、集中度、相关度三个强信息特征标准;在特征权重计算上,提出了将词频和综合特征选择函数相结合的权重计算方法;最后,结合朴素贝叶斯原理进行分类。实验证明该分类器简单有效。 相似文献
8.
文本分类是研究文本数据挖掘、信息检索的重要手段,文本特征项权重值的计算是文本分类算法的关键。针对经典的特征权重计算方法TF-IDF中存在的不足,提出了一种动态自适应特征权重计算方法(DATW)。该算法不仅考虑了特征项在文本中出现的频率及该特征项所属文本在训练集中的数量,而且通过考查特征项的分散度和特征向量梯度差以自适应动态文本的分类。实验结果表明,采用DATW方法计算特征权重可以有效提高文本分类的性能。 相似文献
9.
随着Internet技术的发展,人们不仅可以从网络获取信息,也能够在网络上表达个人观点、分享自身体验。自Web2.0以来网络已经由原来的阅读式网络转换成为了当今的交互式网络。而伴随网络发展的是成几何速率增长的网络信息。文本信息是网络信息的重要组成部分,不同文本信息可以分成新闻、娱乐、时评、财经等不同类别。进行中文文本分类不仅能为建立文本语料库提供便利还能够应用到其它数据挖掘领域。论文基于改进TF-IDF特征并结合SVM模型设计了一种自动化的中文文本分类系统。实验证明,对比传统特征提取方式,采用改进TF-IDF特征策略进行文本分类能够获得更高的准确度。 相似文献
10.
11.
传统tf.idf算法中的idf函数只能从宏观上评价特征区分不同文档的能力,无法反映特征在训练集各文档以及各类别中分布比例上的差异对特征权重计算结果的影响,降低文本表示的准确性。针对以上问题,提出一种改进的特征权重计算方法tf.igt.igC。该方法从考察特征分布入手,通过引入信息论中信息增益的概念,实现对上述特征分布具体维度的综合考虑,克服传统公式存在的不足。实验结果表明,与tf.idf.ig和tf.idf.igc 2种特征权重计算方法相比,tf.igt.igC在计算特征权重时更加有效。 相似文献
12.
文本分类是信息检索和数据挖掘的基础,被广泛应用于网络数据挖掘及搜索引擎等方面。首先对文本进行分词,对分词的结果分别使用x2统计量(CHI)方法与相关系数法(CC法)进行降维,并使用维数调节的思想进行特征提取。在得到特征集后,使用覆盖算法作为文本分类器进行学习。实验结果表明,通过结合相关系数法、覆盖算法以及维数调节方法,可实现一个效果较好的文本分类器。 相似文献
13.
14.
15.
特征选择即是降维去噪的过程,一个词汇是否具有强的类别区分能力通过特征选择评价函数的权值大小来衡量,然而影响特征选择的因素有很多,主要包括特征的维度、重要性和语义;针对短文本信息量少导致特征表示高维稀疏和传统特征提取方法缺乏语义的问题,构建多因素融合的特征选择函数FS,和传统的特征选择函数TF-IDF对比,FS不仅融入了特征的语义性,而且能够去除大量冗余特征,提高具有类别区分能力特征的权重;把FS作为新的特征选择函数,使用搜狗实验室的中文语料库进行短文本分类实验,验证了方法有效性. 相似文献
16.
分类是文本信息搜索和挖掘的核心内容,被广泛应用于搜索引擎的设计以及数据挖掘的研究中。首先对文本进行分词,对分词的结果采用x2统计量的方法提取特征,再使用前向神经网络的交叉覆盖算法作为分类器进行文本分类。实验表明,x2统计量可大规模降低特征维数,在此基础上结合交叉覆盖算法的优秀分类能力,可在特征维数较低的情况下获得一个性能较好的文本分类器。 相似文献
17.
分类是文本信息搜索和挖掘的核心内容,被广泛应用于搜索引擎的设计以及数据挖掘的研究中。首先对文本进行分词,对分词的结果采用x2统计量的方法提取特征,再使用前向神经网络的交叉覆盖算法作为分类器进行文本分类。实验表明,x2统计量可大规模降低特征维数,在此基础上结合交叉覆盖算法的优秀分类能力,可在特征维数较低的情况下获得一个性能较好的文本分类器。 相似文献
18.
以微博为代表的社交平台是信息时代人们必不可少的交流工具.挖掘微博文本数据中的信息对自动问答、舆情分析等应用研究都具有重要意义.短文本数据的分类研究是短文本数据挖掘的基础.基于神经网络的Word2vec模型能很好的解决传统的文本分类方法无法解决的高维稀疏和语义鸿沟的问题.本文首先基于Word2vec模型得到词向量,然后将类别因素引入传统权重计算方法TF-IDF (Term Frequency-Inverse Document Frequency)设计词向量权重,进而用加权求和的方法得到短文本向量,最后用SVM分类器对短文本做分类训练并且通过微博数据实验验证了该方法的有效性. 相似文献