首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对中文散文诗歌的自动生成,提出一种基于循环神经网络的时序性文本生成方法.通过现有语料库构建好一个词语集后,首先给定若干关键词,在聚类模型生成的词语集基础上进行关键词扩展生成首句.在确定首句的基础上,利用上下文模型对已生成内容进行压缩和上文特征获取,最后将之前上下文内容传递给递归神经网络模型实现后续句子的生成.该方法中首句生成的过程利用语言模型中的词汇集扩展,并通过上下文模型获取关联实现上下句的映射关系.本文采用BLEU自动评测方式和人工评测方式,建立起较为标准的评测系统,实验结果证实了该方法的有效性.  相似文献   

2.
大量的研究行为识别方法集中在检测简单的动作,如:步行,慢跑或者跳跃等;针对于打斗或者动作复杂的攻击性行为则研究较少;而这些研究在某些监控场景下非常有用,如:监狱,自助银行,商场等. 传统的暴力行为识别研究方法主要利用先验知识来手动设计特征,而本文提出了一种基于3D-CNN结构的暴力检测方法,通过三维深度神经网络直接对输入进行操作,能够很好的提取暴力行为的时空特征信息,从而进行检测. 从实验结果可以看出,本文方法能较好地识别出暴力行为,准确率要高于人工设计特征的方法.  相似文献   

3.
小目标检测是针对图像中像素占比少的目标,借助计算机视觉在图像中找到并判断该目标所属类别的目标检测技术。与目前应用较为成熟的大尺度、中尺度目标检测不同,小目标自身存在着语义信息少、覆盖面积小等先天不足,导致小目标的检测效果并不理想,因此如何提高小目标的检测效果依然是计算机视觉领域的一大难题。对近年来国内外小目标检测领域研究成果进行了梳理,以小目标检测技术为核心,对关于小目标的定义、检测难点进行分析;将能有效提高小目标检测精度的方法进行分类汇总,并介绍了各种方法的应用与优缺点;最后对未来小目标检测领域发展趋势进行了预测与展望。  相似文献   

4.
针对人体动作深度视频的四维信息映射到二维空间后,动作分类容易发生混淆的问题,提出一种基于深度学习的人体动作识别方法。首先构建空间结构动态深度图,将深度视频的四维信息映射到二维空间,进行信息降维处理;然后提出基于联合代价函数的深度卷积神经网络,结合交叉熵损失函数与中心损失函数作为联合代价函数,指导卷积层学习到更具分辨力的深度特征,以进行更精确的分类。在MSRDailyActivity3D和SYSU3D HOI两个数据集的实验结果表明,与现有方法相比,该方法识别率得到了较明显的提升,验证了其有效性和鲁棒性。该方法较好地解决了动作分类容易发生混淆的问题。  相似文献   

5.
受相机景深的限制,单次成像无法对不同景深的内容全部清晰成像.多聚焦图像融合技术可以将不同聚焦层次的图像融合为一幅全聚焦的图像,其中如何得到准确的聚焦映射是多聚焦图像融合中的关键问题.对此,利用卷积神经网络强大的特征提取能力,设计具有公共分支和私有分支的联合卷积自编码网络以学习多源图像的特征,公共分支学习多幅图像之间的公共特征,每幅图像的私有分支学习该图像区别于其他图像的私有特征.基于私有特征计算图像的活动测度,得到图像聚焦区域映射,据此设计融合规则以融合两幅多聚焦图像,最终得到全聚焦的融合图像.在公开数据集上的对比实验结果显示:主观评测上,所提出的方法能够较好地融合聚焦区域,视觉效果自然清晰;客观指标上,该方法在多个评价指标上优于对比方法.  相似文献   

6.
近年来行人跌倒检测变得越来越重要,因为准确及时的跌倒检测可以帮助跌倒者获得紧急救援。针对复杂场景中由于光照变化、遮挡和尺度变化等导致检测性能下降的问题,提出一种实时、鲁棒的跌倒检测算法。首先采用YOLO v3目标检测模块完成行人检测;然后在跟踪模块中对每个跟踪的边界框提取深层特征后,运用数据增强和重检测技术提高光照变化下的检测精度,并引入注意力机制子网络应对被遮挡目标的检测;最后跌倒判断模块对行人姿态进行判断,完成实时跌倒检测和报警。在Cityperson数据集、Montreal fall数据集和自建数据集上的实验结果表明,行人检测算法的检测精度达到87.05%,跌倒算法的检测精度达到98.55%,时延在120 ms以内,且在光照变化和遮挡影响下依然能获得良好的性能。  相似文献   

7.
糖尿病视网膜病变是世界上致盲率最高的眼科疾病,早期诊断可以显著降低患者失明的概率。深度学习方法可以提取医学图像的隐含特征,并完成图像的检测任务,因此应用深度学习实现糖尿病视网膜病灶检测成为研究热点。主要从数据集介绍、全监督检测方法、非完全监督检测方法、小样本问题的处理和模型可解释性五个方面进行详细总结,重点整理各类方法的基本思想、网络结构形式、改进方案及优缺点总结等内容,结合当前检测方法所面临的挑战,对其未来研究方向进行展望。  相似文献   

8.
肺癌是世界上死亡率最高的癌症,通过胸部CT影像检测肺结节对肺癌早期诊断和治疗意义重大.为了减轻放射科医生的工作量以及同时减少误诊率和漏诊率,研究人员提出了计算机辅助检测(CAD)系统辅助放射科医生检测和诊断肺结节.目前,研究人员正在尝试不同的深度学习技术,以提高计算机辅助诊断系统在基于CT图像的肺癌筛查中的性能.这项工...  相似文献   

9.
目的 超分辨率技术在实际生活中具有较为广泛的应用。经典的基于卷积神经网络的超分辨率(SRCNN)方法存在重建图像纹理结构模糊以及网络模型训练收敛过慢等问题。针对这两个问题,在SRCNN的基础上,提出一种多通道卷积的图像超分辨率(MCSR)算法。方法 通过增加残差链接,选择MSRA初始化方法对网络权值进行初始化,加快模型收敛;引入多通道映射提取更加丰富的特征,使用多层3×3等小卷积核代替单层9×9等大卷积核,更加有效地利用特征,增强模型的超分辨率重构效果。结果 MCSR迭代4×106次即可收敛,在Set5与Set14数据集上边长放大3倍后的平均峰值信噪比分别是32.84 dB和29.28 dB,与SRCNN相比提升显著。结论 MCSR收敛速度更快,并且可以生成轮廓清晰的高分辨率图像,超分辨率效果更加优秀。  相似文献   

10.
基于卷积神经网络在图像特征表示方面的良好表现,以及深度哈希可以满足大规模图像检索对检索时间的要求,提出了一种结合卷积神经网络和深度哈希的图像检索方法.针对当前典型图像检索方法仅仅使用全连接层作为图像特征进行检索时,存在有些样本的检索准确率为零的问题,提出融合神经网络不同层的信息作为图像的特征表示;针对直接使用图像特征进行检索时响应时间过长的问题,使用深度哈希的方法将图像特征映射为二进制的哈希码,这样哈希码中既包含底层的边缘信息又包含高层的语义信息;同时,提出了一种相似性度量函数进行相似性匹配.实验结果表明,与已有的图像检索方法相比,该方法在检索准确率上有一定程度的提高.  相似文献   

11.
采用原始的蒙皮区域卷积神经网络(Mask R-CNN)获取周围神经MicroCT图像中的神经束轮廓时存在收敛慢、精度低等问题.首先构建两个数据子集,然后提出一种密集连接型网络结构,提取神经束区域特征.此外,改进目标检测部分候选框的得分评价规则,并结合迁移学习策略改进原始算法的训练方式.采用准确率和交并比指标评价算法的准...  相似文献   

12.
随着近年来深度学习的日益发展,图像美学评价逐渐成为一个新的热门研究课题,深度卷积神经网络在图像美学评价的应用成功地取得了可观的发展成果,并引起了广泛的关注。为了解决现有综述存在的文献概括不全、对该技术的发展情况认识不足的问题,先后从全局感知和局部感知、个性化查询、手工特征提取与深度卷积神经网络结合等角度对其发展情况进行了详细地阐述,对图像美学评价、图像裁剪、工具应用等应用情况作了分析,并从充分结合多场景、巧用构图规则、提前建立美学图像数据集等角度进行了未来工作展望。  相似文献   

13.
针对传统机器学习人工提取特征耗时耗力,并且提取高质量特征存在一定困难等问题,将基于深度学习的方法,首次结合卷积神经网络和概率神经网络,提出了一种新的模型GoogleNet-PNN,其自动学习特征,避免了手动提取特征的繁琐性,而且结合了PNN训练容易、收敛速度快等特点,在肝病分类的实验中取得了较好的效果;并使用了迁移学习的方法,通过在自然图像集的预训练,然后应用到医学图像,避免了因样本不足而出现的过拟合问题,实验结果最终表明识别准确率要优于其他方法,达到了98%的客观识别率。  相似文献   

14.
目的 人脸图像分析是计算机视觉和模式识别领域的重要研究方向之一,基于人脸图像的血缘关系识别是对给定的一对或一组人脸图像,判断其是否存在某种血缘关系。人脸血缘关系识别不仅在生物特征识别领域有着重要研究价值,而且在社交媒体挖掘、失散家庭成员寻找等社会生活领域中有重要的应用价值。针对当前大多数算法都是基于传统机器学习方法,提出一种采用深度度量学习进行人脸图像血缘关系研究的新方法。方法 目前深度学习算法能很好地理解单张人脸图像,但是多个主体间的关系探究仍然是计算机视觉领域富有挑战性的问题之一。为此,提出一种基于深度度量学习的父母与子女的血缘关系识别方法。首先使用超过5 000 000张人脸图像的样本集训练一个深度卷积神经网络FaceCNN并提取父母与子女的人脸图像深度特征,之后引入判别性度量学习方法,使得具有血缘关系的特征尽可能地靠近,反之则尽可能地远离。然后对特征进行分层非线性变换使其具有更强判别特性。最后根据余弦相似度分别计算父亲、母亲和孩子的相似度并利用相似概率值得到双亲和孩子的综合相似度得分。结果 算法在TSKinFace数据集上验证了FaceCNN提取特征与深度度量学习结合进行血缘关系识别的有效性,最终在该数据集上父母与儿子和女儿的血缘关系识别准确率分别达到87.71%和89.18%,同时算法在进行血缘度量学习和双亲相似度计算仅需要3.616 s。结论 提出的血缘关系识别方法,充分利用深度学习网络良好的表征和学习能力,不仅耗时少,而且有效地提高了识别准确率。  相似文献   

15.
视觉感知是无人驾驶技术中的重要一环,而语义分割技术又是实现视觉感知的主要技术手段之一.现在的语义分割技术多采用计算量大、内存占用高的空洞卷积来提取高分辨率特征图,从而导致现在主流的语义分割网络分割速度不足,无法有效应用于无人驾驶的场景中.针对这一问题,提出了一种实时性更好的语义分割网络.首先,采用了一种轻量级的卷积神经...  相似文献   

16.
航空遥感图像目标检测旨在定位和识别遥感图像中感兴趣的目标,是航空遥感图像智能解译的关键技术,在情报侦察、灾害救援和资源勘探等领域具有重要应用价值。然而由于航空遥感图像具有尺寸大、目标小且密集、目标呈任意角度分布、目标易被遮挡、目标类别不均衡以及背景复杂等诸多特点,航空遥感图像目标检测目前仍然是极具挑战的任务。基于深度卷积神经网络的航空遥感图像目标检测方法因具有精度高、处理速度快等优点,受到了越来越多的关注。为推进基于深度学习的航空遥感图像目标检测技术的发展,本文对当前主流遥感图像目标检测方法,特别是2020—2022年提出的检测方法,进行了系统梳理和总结。首先梳理了基于深度学习目标检测方法的研究发展演化过程,然后对基于卷积神经网络和基于Transformer目标检测方法中的代表性算法进行分析总结,再后针对不同遥感图象应用场景的改进方法思路进行归纳,分析了典型算法的思路和特点,介绍了现有的公开航空遥感图像目标检测数据集,给出了典型算法的实验比较结果,最后给出现阶段航空遥感图像目标检测研究中所存在的问题,并对未来研究及发展趋势进行了展望。  相似文献   

17.
针对以往的前景检测方法对场景信息依赖较多的问题,提出了一种实时的无需迭代更新背景模型的前景检测深度学习模型ForegroundNet。ForegroundNet 首先通过骨干网络从当前图像和辅助图像中提取语义特征,辅助图像为相邻的图像帧或者是自动生成的视频背景图像;然后将提取得到的特征输入到包含短连接的反卷积网络中,使得最终特征图在与输入图像具有相同的大小,并且包含不同尺度的语义及动态特征;最后使用softmax 层进行二值分类,得到最终检测结果。在CDNet 数据集上进行的实验结果表明,相比于当前F 值为0.82 的次优方法,ForegroundNet 能够获得0.94 的F 值,具有更高的检测精度;同时ForegroundNet 检测速度达到123 fps,具有良好的实时性。  相似文献   

18.
为了进一步提高性别识别的准确率,提出了一种基于多层特征融合与可调监督函数机制的结合的卷积神经网络(L-MFCNN)模型,并将之用于人脸性别识别。与传统卷积神经网络(CNN)不同,L-MFCNN将多个浅层中间卷积层特征输出与最后卷积层特征输出相结合,融合多层卷积层的特征,不仅利用了深层卷积的整体语义信息,还考虑了浅层卷积的细节局部纹理信息,使得性别识别更加准确。此外L-MFCNN还引入具有可调目标监督函数机制的Large-Margin Softmax Loss作为输出层,利用其调节不同的间隔(margin)的机制来有效引导深层卷积网络学习,使得同种性别间的类内间距更小,不同性别间的类间距更大,获得更好的性别识别效果。在多个人脸数据集上的性别识别实验结果表明,L-MFCNN的识别准确率要高于其他传统的卷积网络模型。L-MFCNN模型也为将来的人脸性别识别研究提供了新的思路与方向。  相似文献   

19.
遥感图像俯视角带来的目标朝向多样性影响了大长宽比舰船目标检测的旋转不变性。针对这一问题;提出了一个基于改进YOLOv3的倾斜边界框检测模型。通过引入角度预测实现倾斜边界框回归;提出一种旋转卷积集成模块;通过旋转卷积和旋转激活提高深度卷积网络(Deep Convolutional Neural Networks;DCNN)特征图对于角度变化的敏感性;将目标边界框倾斜角度预测建模为由粗粒度到细粒度的两次角度分类问题;将角度惩罚引入模型的多任务损失函数中;使得模型能够学习目标的角度偏移。通过对舰船目标标注数据集上的实验可以看到;所提的模型和经典YOLOv3模型相比平均精度提高了12.7%;同时能够保持单阶段目标检测的速度优势。  相似文献   

20.
随着深度学习的发展,近年来人脸识别借助深度学习技术取得了巨大突破。但是在已有的基于深度学习的人脸识别框架中,各个任务(人脸鉴别、认证和属性分类等)都是相互独立设计、运作的,使得整体算法低效、耗时。针对这些问题,提出一种基于多任务框架的深度卷积网络。通过将人脸鉴别、认证和属性分类同时作为网络目标函数,端到端地训练整个深度卷积网络,算法简洁高效。此网络可以同时完成上述三个任务,不需要额外的步骤。实验结果显示,即使在有限的数据支持下,该方法依然能够取得不错的性能,在人脸识别权威数据集LFW上获得了97.3%的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号