首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
采用Gleeble-3500热模拟试验机对09CrCuSb钢连铸坯的高温力学性能进行测试,得到其在650~1 300℃的应力—应变曲线、高温强度、热塑性和塑性模量的变化规律。结果表明:应力—应变曲线中,应力峰值随测试温度升高而减小,当测试温度高于700℃时,应力—应变曲线中出现应力平台现象;连铸坯试样的高温强度较差,随温度升高,其高温强度整体呈下降趋势;在2.4×10~(-3) s~(-1)应变速率下,存在两个明显的脆性温度区间,第一脆性温度区间为1 200℃~熔点,第三脆性温度区间为700~800℃,在825~1 250℃时09CrCuSb钢连铸坯热塑性较好,断面收缩率均大于80%;连铸坯试样的高温塑性模量在675~1 300℃时小于660.099 MPa。  相似文献   

2.
在Gleeble-3800热模拟机上进行了W6Mo5Cr4V2(M2)高速钢热模拟试验,测试了650~1 250℃温度M2钢的高温力学性能,得到了抗拉强度曲线和热塑性曲线,观察了不同温度下试样的金相组织和断口形貌。试验结果表明:M2高速钢的零塑性温度为1 220℃,零强度温度为1 250℃;良好的塑性温度区为950~1 150℃,脆性区为1 175℃~熔点;在850~950℃存在较弱的脆性区,在800℃附近还存在良好的低温超塑性区;M2高速钢的高温力学性能与基体组织的相变、碳化物的溶解、低熔点碳化物的熔化有直接关系。  相似文献   

3.
为了探讨生产13Cr超级马氏体不锈钢合适的热变形温度,在Gleeble1500热模拟试验机上对13Cr超级马氏体不锈钢进行了应变速率为2.5 s-1、不同变形温度下的高温热塑性试验及热压缩试验,对变形后的试样进行了金相组织观察,并对回火后组织中逆变奥氏体含量进行了测定。结果表明,13Cr超级马氏体不锈钢回火前的马氏体板条粗大,回火后的马氏体发生显著的细化;根据高温热塑性曲线、热变形过程再结晶组织及回火后逆变奥氏体含量,确定13Cr超级马氏体不锈钢适宜的变形温度为1 050~1 150 ℃。  相似文献   

4.
利用Gleeble-3800热模拟试验机对纯镍N6在变形温度800~1100℃,应变速率5~40 s-1,应变量70%条件下进行了高温塑性变形压缩试验,分析纯镍N6高温高应变速率热变形行为,得到了材料在不同变形参数条件下的组织变化规律及流变应力变化曲线,利用动态材料模型绘制出了纯镍N6在不同应变条件下的热加工图.通过对组织及热加工图的分析研究,得出变形温度为1000~1100℃,应变速率为5~7 s-1或20~40 s-1以及变形温度为800~900℃,应变速率为5~10 s-1为纯镍N6材料高温高应变速率热变形的两个合理变形参数区间,在参数区间内N6组织均匀;而流变失稳区变形参数条件下得到的组织比较紊乱,晶粒大小不一.纯镍N6热变形后的晶粒尺寸随变形温度升高及应变速率减小而增大.   相似文献   

5.
使用Thermecmastor-Z(300kN)型热加工模拟实验机,研究了201不锈钢在变形温度1 000~1 250℃、变形速率0.1~50s~(-1)条件下的形变规律,绘制了应力—应变曲线。试验结果表明,该钢的变形抗力随着变形温度的升高而降低,随变形速率的增大而增大。在变形速率为10s~(-1)、变形温度1 000~1 250℃条件下,变形抗力随应变增加出现明显峰值。通过回归分析建立了变形抗力模型,该模型具有较好的拟合特性,计算值与实测值拟合较好,可为生产工艺参数的制定提供参考。  相似文献   

6.
为研究易切削模具钢高温热塑性,利用热膨胀仪分析了该材料在不同冷速下的微观组织转变规律及相变点,并绘制了CCT曲线;利用Gleeble-3800试验机模拟研究材料高温拉伸断裂行为,结合断口形貌分析材料热塑性规律。试验结果表明,该材料高温热塑性存在明显的3个区域,分别为第3脆性区、韧性区和第1脆性区。试验钢在950~1 150 ℃范围内变形性能最优,为高温塑性区;950 ℃以下为第3脆性区,断口形貌为韧窝和解理,且随着变形温度的升高,韧窝数量增多,伸长率增加,直至950 ℃拉伸后断口形貌基本上全为韧窝;1 300 ℃及以上为第1脆性区,伸长率随变形温度升高而下降。提高冷却速率,会增加冷却过程中奥氏体内部的热应力,导致在相同温度下变形时伸长率较低冷却速率时小。  相似文献   

7.
为了探究03Cr18NiMoN节镍双相不锈钢高温轧制变形机制和组织演变规律,利用Gleeble-3800热模拟试验机在变形温度为850~1 150℃,应变速率为0.01~10 s~(-1),变形量为50%条件下对其进行高温压缩研究。流变应力曲线在950~1 150℃的较高变形温度和0.01~0.1 s~(-1)低应变速率条件下呈现出明显动态再结晶特征。变形初期,试验钢的加工硬化率随变形温度的降低和应变速率的升高而增加,不利于动态再结晶软化。组织分析表明,随变形温度升高至1 050℃和应变速率降低,奥氏体动态再结晶更加充分,晶粒细化程度明显提高,而1 150℃高变形温度使奥氏体再结晶晶粒粗化。在950℃、0.01~1 s~(-1)的变形条件下,铁素体动态回复逐渐加强。热变形激活能Q=549.7 kJ/mol,高于2 205双相不锈钢(451 kJ/mol),表观应力指数n=6.079,表明其变形机制主要以体扩散引起的位错低温攀移为主。热加工图分析表明,失稳区域随应变量增加逐渐增大,结合流变应力曲线和显微组织分析,确定最佳加工区域为950~1 050℃的变形温度和0.01~0.018 s~(-1)的应变速率,且功率耗散因子处于较高(0.36~0.50)水平。此外,基于Z参数建立了试验钢的峰值流变应力本构方程。  相似文献   

8.
采用热扭转及热顶锻试验,分别在试验温度750~1200及900~1200℃,热扭转应变速率为1.1~4.6×10~(-1)s~(-1)下,对铸态和轧态组织的W-Mo高速钢的热塑性进行了试验研究。试验结果表明:W6Mo5Cr4V2与W9Mo3Cr4V的塑性变形曲线具有完全相同的走向:分别存在着高温塑性区(1000~1100℃),低温高塑性区(780~870℃)以及低温脆性温度(880℃)。其低温高塑性不可逆,当加热温度超过880℃,再将温度降到低温高塑性区内,其塑性大大下降。W6Mo5Cr4V2Al的塑性曲线与其不同。加入Al可改善热塑性,降低变形抗力。W及Mo增加高速钢的变形抗力(特别在高温时)。采用非连续热扭转变形可大大提高高速钢的热塑性,消除低温脆性。  相似文献   

9.
采用Gleeble-3500热模拟试验机进行高温等温压缩实验,研究了GH690合金在变形温度为950~1250℃、应变速率为0.001~10s<'-1>条件下的热变形行为,采用金相显微镜对GH690合金热模拟试样的纵截面变形组织进行观察.结果表明:应变速率和变形温度对合金的流变应力与变形组织有显著影响.流变应力随变形温度的升高而降低,随着应变速率的增加而升高,说明该合金属于正应变速率敏感的材料;动态再结晶晶粒尺寸随应变速率的增加而减小,随变形温度的增大而增大.采用Zener-Hollomon参数的双曲正弦函数能较好地描述GH690合金高温变形时的流变行为,得到峰值应力表达式,GH690合金的热变形激活能Q为370.4 kJ·mol<'-1>.  相似文献   

10.
在Gleeble- 3800热模拟机上进行了高速工具钢W6Mo5Cr4V2(M2)钢热模拟试验,测试了从650℃到1250℃温度M2钢的高温力学性能,得到了抗拉强度曲线和热塑性曲线,观察了不同温度下试样的金相组织和断口形貌。试验结果表明:M2高速钢的零塑性温度为1220℃,零强度温度为1250℃。良好的塑性温度区为950~1150℃,脆性区主要为1175℃至熔点,在850~950℃存在一个较弱的脆性区。在800℃附近,还存在一个良好的低温超塑性区。分析表明,M2高速钢的高温力学性能与基体组织的相变、碳化物的溶解和低熔点碳化物的熔化有很大关系。  相似文献   

11.
 用Gleeble热模拟实验机对2种不同成分的普通碳素钢进行实验,实验的过程为:以10 ℃/s加热到950 ℃,保温2 min,再以10 ℃/s的冷速降到变形温度(900~600 ℃),以10 s-1或30 s-1的变形速率进行了变形量为80%的变形,变形后立即水淬。通过光学显微镜和透射电镜观察分析,确定了普通碳素钢利用形变诱导铁素体相变获得的超细晶组织及两相区变形获得的超细晶组织的典型形貌特征。  相似文献   

12.
RAFM钢应变补偿本构关系及热加工图   总被引:1,自引:0,他引:1  
邱国兴  白冲  蔡明冲  王建立  李小明  曹磊 《钢铁》2022,57(11):157-166
低活化铁素体/马氏体(RAFM)钢具有较低的辐照肿胀率和优异的力学性能,被认为是聚变堆首选的结构材料。然而,低活化钢强度高、冷塑性变形抗力大的特点,使其难以通过冷加工或低温加工实现大规模生产。使用MMS-200型热模拟试验机,在变形温度为950~1 200℃、应变速率为0.1~5 s-1和最大变形量为50%条件下,进行了低活化铁素体/马氏体钢(0.11C-9.4Cr-1.35W-0.22V-0.05Si-0.11Ta-0.50Mn)单道次热压缩试验,研究其热变形行为。基于动态材料模型构建了不同应变量下的低活化钢变形本构方程和热加工图,确定了最优热加工参数,结合金相结果分析了材料变形过程中微观组织演化规律,为低活化钢的热加工成形工艺及组织优化提供理论参考。结果表明,在相同应变速率下,随着变形温度升高,流变应力逐渐降低,在一定变形温度下,流变应力随应变速率增大而增大;温度和应变速率对组织的影响主要取决于变形过程中材料内部发生的动态回复和再结晶等机制的交互作用。使用六阶多项式拟合进行应变补偿建立的低活化钢变形本构方程具有较高的预测精度,平方相关系数为0.972。显微组织...  相似文献   

13.
梁剑雄  雍岐龙  张良  王长军 《钢铁》2016,51(9):82-89
 运用Gleeble-3800热模拟试验机研究了1Cr17Ni1马氏体-铁素体双相不锈钢在变形温度为950~1 150 ℃、应变速率为0.1~10 s-1条件下的热压缩变形行为。运用双曲正弦函数构建了本构方程,得到了表观激活能为391.586 kJ/mol,并基于动态材料模型绘制了1Cr17Ni1钢不同应变量下的热加工图。观察变形后的组织形貌得到较低温度下发生动态回复与动态再结晶,较高温度只发生动态回复,综合热加工图与变形后组织得到最佳热变形工艺:热加工温度范围为950~1 000 ℃、热加工变形速率范围为0.1~0.3和5~10 s-1。  相似文献   

14.
马昕  许斯洋  周舸  丁桦 《中国冶金》2022,32(9):26-36
为获得Ni60Ti40形状记忆合金热变形的最佳工艺参数,利用等温恒速率热压缩试验研究了在温度为800~1 000℃、应变速率为0.005~5.000 s-1条件下Ni60Ti40合金的热变形行为,通过探究不同变形温度和应变速率对Ni60Ti40合金流变行为的影响创建本构关系,并以动态材料模型为基础构建热加工图。结果表明,Ni60Ti40合金的流变应力随变形温度的升高而减小、随应变速率的升高而增大。温度为900~1 000℃、应变速率为0.005~0.500 s-1时,流变应力较快达到稳态,且所需的变形量较少。采用Arrhenius双曲正弦模型构建的Ni60Ti40合金热变形的流变应力本构关系模型可基本准确地预测实际流变应力随工艺参数的变化趋势,计算得到Ni60Ti40合金的平均热变形...  相似文献   

15.
马昕  许斯洋  周舸  丁桦 《中国冶金》2006,32(9):26-36
为获得Ni60Ti40形状记忆合金热变形的最佳工艺参数,利用等温恒速率热压缩试验研究了在温度为800~1 000 ℃、应变速率为0.005~5.000 s-1条件下Ni60Ti40合金的热变形行为,通过探究不同变形温度和应变速率对Ni60Ti40合金流变行为的影响创建本构关系,并以动态材料模型为基础构建热加工图。结果表明,Ni60Ti40合金的流变应力随变形温度的升高而减小、随应变速率的升高而增大。温度为900~1 000 ℃、应变速率为0.005~0.500 s-1时,流变应力较快达到稳态,且所需的变形量较少。采用Arrhenius双曲正弦模型构建的Ni60Ti40合金热变形的流变应力本构关系模型可基本准确地预测实际流变应力随工艺参数的变化趋势,计算得到Ni60Ti40合金的平均热变形激活能为213 kJ/mol。Ni60Ti40合金的热变形有3个稳定变形区和1个失稳区,适宜变形的区域为800~870 ℃/0.005~0.080 s-1、870~950 ℃/0.080~0.500 s-1和950~1 000 ℃/0.050~5.000 s-1;不适合进行热加工的区域为800~850 ℃/0.220~5.000 s-1。  相似文献   

16.
 采用热压缩和热拉伸试验方法,对节镍型双相不锈钢00Cr21Mn5Ni1N的高温变形抗力、高温塑性及高温变形时奥氏体相的数量进行了研究。结果表明,00Cr21Mn5Ni1N双相不锈钢在950~1 200 ℃之间变形时,具有良好的热加工性能,钢中奥氏体相量可以控制在适合热加工的范围。  相似文献   

17.
含铜奥氏体不锈钢具有优异的抗菌性能而广泛应用在食品加工、医疗等领域,然而铜的加入会显著影响不锈钢的加工性能。用Gleeble-3800热模拟试验机对含铜4.35%奥氏体抗菌不锈钢进行了单道次等温热压缩试验,研究了不锈钢在变形温度为900~1 150℃、应变速率为0.01~10 s-1和变形量为50%下的高温变形行为,构建了反映其材料特性的本构方程,使用金相显微镜观察了热变形后的微观组织,分析了各变形工艺下的微观组织演化规律,为含铜不锈钢的加工成型工艺及组织优化提供了理论参考。结果表明,4.35%Cu-304L钢的流动应力对变形工艺是敏感的,应力随着变形温度的升高和应变速率的降低而减小。采用得到的应力应变曲线建立了一种基于Arrhenius的5阶多项式拟合的应变补偿本构模型,根据此模型计算了相关系数R和平均相对误差AARE分别为0.972和9.03%,这表明所构建模型可以准确地反映含铜不锈钢的流动行为。结合微观组织发现较高的温度和较快的应变速率有利于再结晶的发生,由于0.01 s-1低应变速率提供的变形能低,在变形温度为1 100℃、应变速率为...  相似文献   

18.
以上引连铸TU1杆料为研究对象,在MMS-100热模拟试验机上对其进行单道次压缩试验,研究了在不同应变速率(0.01~10 s-1)和不同变形温度(750~950 ℃)条件下的热变形行为,构建其本构模型.结果表明:在10 s-1高应变速率条件下,TU1在750 ℃变形时峰值应力高达80 MPa,当温度升高到950 ℃时,峰值应力降至38 MPa;而在应变速率为0.01 s-1、750 ℃变形时,峰值应力仅为30 MPa,此时TU1已经发生动态再结晶;通过本构方程计算得到TU1的热变形激活能约为253 kJ/mol.   相似文献   

19.
7085铝合金热变形的流变应力行为和显微组织   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟机进行热压缩实验,研究7085铝合金在变形温度为350~470℃、应变速率为0.001~1 s?1条件下的流变应力变化规律和变形后的显微组织。研究表明:7085铝合金的流变应力随应变速率增大而增大,随变形温度升高而减小。该合金热压缩变形的流变应力行为可用双曲正弦形式的本构方程描述为ε=A[sinh(ασ)]nexp(?Q/RT),也可用Zener-Hollomon参数来描述,其参数A、α、n以及热变形激活能Q分别为2.722 54×1011s?1、0.016 03 MPa?1、6.259以及176.58 kJ/mol。随着温度升高和应变速率降低,合金的主要软化机制由动态回复逐渐转变为动态再结晶。  相似文献   

20.
 采用Gleeble 1500热力模拟机测定了变形速率为1 s-1、10 s-1和20 s-1,变形程度75%,变形温度为1 200 ℃、1 100 ℃、1 000 ℃、900 ℃及800 ℃时硅锰系TRIP钢的应力 应变曲线。应用SPASS软件对TRIP钢变形抗力实验结果进行拟合,并模拟了变形条件对变形抗力的影响,得到数学模型公式。计算平均绝对误差均小于5 MPa,平均相对误差小于5%,最大绝对误差小于10 MPa,最大相对误差小于15%,误差均较小,计算结果属于允许范围。结果证明:真应变大于04应力基本稳定;变形温度低于1 100 ℃时,加工硬化比较明显,表明温度越低,加工硬化率越高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号