首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After a high-temperature reduction (HTR) at 773 K, TiO2-supported Au became very active for CO oxidation at 313 K and was an order of magnitude more active than SiO2-supported Au, whereas a low-temperature reduction (LTR) at 473 K produced a Au/TiO2 catalyst with very low activity. A HTR step followed by calcination at 673 K and a LTR step gave the most active Au/TiO2 catalyst of all, which was 100-fold more active at 313 K than a typical 2% Pd/Al2O3 catalyst and was stable above 400 K whereas a sharp decrease in activity occurred with the other Au/TiO2 (HTR) sample. With a feed of 5% CO, 5% O2 in He, almost 40% of the CO was converted at 313 K and essentially all the CO was oxidized at 413 K over the best Au/TiO2 catalyst at a space velocity of 333 h–1 based on CO + O2. Half the chloride in the Au precursor was retained in the Au/TiO2 (LTR) sample whereas only 16% was retained in the other three catalysts; this may be one reason for the low activity of the Au/TiO2 (LTR) sample. The reaction order on O2 was approximately 0.4 between 310 and 360 K, while that on CO varied from 0.2 to 0.6. The chemistry associated with this high activity is not yet known but is presently attributed to a synergistic interaction between gold and titania.  相似文献   

2.
Selective catalytic oxidation of hydrogen in the presence of hydrocarbons was studied in a fixed bed quartz reactor, over 3 wt%Au/TiO2 and 5 wt%Au/TiO2 catalysts. This reaction can be utilised in the production of light alkenes via catalytic dehydrogenation, providing in situ heat to the endothermic dehydrogenation reaction and simultaneously removing a fraction of the produced hydrogen. It is important to avoid the non-selective combustion of the hydrocarbons in the mixture. Both 3 wt%Au/TiO2 and 5 wt%Au/TiO2 are active for the combustion of hydrogen, but in a gas mixture with propane and oxygen the selectivity is dependent upon the feed ratio of hydrogen and oxygen. At 550 °C, with propane present, no carbon oxides are formed when the H2:O2 ratio is four, but at lower ratios some CO2 and some CO is formed.  相似文献   

3.
Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT)-based calculations and in situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt-containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., γ-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results suggest that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of sites that burn ethanol molecules and their partially oxidized derivatives to the final products. The γ-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these species to the Pt particles. This in turn produces a higher conversion rate of unburned ethanol.  相似文献   

4.
甲醇水蒸汽重整制氢Au/TiO2催化剂   总被引:1,自引:0,他引:1  
采用沉积-沉淀法制备了一系列Au/TiO2催化剂,考察了Au负载量、焙烧温度以及助剂等因素对甲醇水蒸汽重整制氢反应催化性能的影响;并利用XRD, TEM对催化剂进行了表征. 结果表明,制备条件对催化性能有明显影响;Au负载量为5%(w)时所得催化剂活性较好;助剂NiO可使催化剂催化甲醇水重整的催化活性明显提高;100℃烘干未焙烧制得的催化剂活性最好;TEM结果显示,NiO的加入使载体TiO2颗粒分散度提高,Au粒粒度变小.  相似文献   

5.
CO低温氧化负载金催化剂研究进展   总被引:1,自引:0,他引:1  
从合成方法、制备条件和金粒子尺寸、载体效应等方面介绍了影响负载型纳米Au催化剂催化活性的因素、可能的反应机理。评述了选择适当的合成方法可以有效地控制金粒子直径,并使其均匀分散于载体之上,从而得到更好的催化活性。适当的焙烧温度与载体类型也是获得高活性催化剂的必要条件。  相似文献   

6.
制备条件对Au/TiO2液相氧化反应活性的影响   总被引:1,自引:0,他引:1  
采用沉积-沉淀法制备纳米级Au/TiO_2催化剂,以葡萄糖液相催化氧化制葡萄糖酸为探针反应,考察了催化剂制备条件对Au/TiO_2活性的影响,并利用TEM、XRD和XPS等方法对催化剂进行了表征。结果表明,Au/TiO_2对葡萄糖液相氧化反应的催化活性与催化剂的制备条件密切相关,纳米金的颗粒尺寸不是决定催化活性的惟一因素,金在催化剂中的价态对催化活性有重要影响。  相似文献   

7.
Model catalysts of Au clusters supported on TiO2 thin films were prepared under ultra-high vacuum (UHV) conditions with average metal cluster sizes that varied from ~2.5 to ~6.0 nm. The reactivities of these Au/TiO2 catalysts were measured for CO oxidation at a total pressure of 40 Torr in a reactor contiguous to the surface analysis chamber. Catalyst structure and composition were monitored with Auger electron spectroscopy (AES) and scanning tunneling microscopy and spectroscopy (STM/STS). The apparent activation energy for the reaction between 350 and 450 K varied from 1.7 to 5 kcal/mol as the Au coverage was increased from 0.25 to 5 monolayers, corresponding to average cluster diameters of 2.5–6.0 nm. The specific rates of reaction ((product molecules) × (surface site)-1 × s-1 were dependent on the Au cluster size with a maximum occurring at 3.2 nm suggesting that CO oxidation over Au/TiO2(001)/Mo(100) is structure sensitive. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
用沉积-沉淀法制备了Au/La2O3/TiO2催化剂,考察了制备条件和反应条件对催化剂活性的影响,并利用X射线衍射(XRD)、透射电子显微镜(TEM)等测试手段对催化剂进行了表征. 结果表明La2O3的加入可使催化剂催化甲醇水重整的催化活性明显提高,且明显降低产物气体中CO和CH4的含量,使氢气选择性明显增加. 当nH2O/nCH3OH=1.0、液体进料空速WHSV=3.42 h-1、反应温度为275℃时,Au/La2O3/TiO2催化剂催化甲醇水蒸汽重整制氢反应的效果最佳.  相似文献   

9.
CO oxidation over Au/TiO2 prepared from metal-organic gold complexes   总被引:1,自引:0,他引:1  
A series of Au/TiO2 catalysts has been prepared from precursors of various metal-organic gold complexes (Au n , n = 2–4) and their catalytic activity for CO oxidation studied. The Au/TiO2 catalyst synthesized from a tetranuclear gold complex shows the best performance for CO oxidation with transmission electron microscopy of this catalyst indicating an average gold particle size of 3.1 nm.  相似文献   

10.
不同方法负载钨钒钛催化剂对催化氧化邻二氯苯的影响   总被引:1,自引:1,他引:1  
钨钒钛催化剂是消除钢铁冶炼废气中的二噁英最好的催化剂,为了降低工业生产成本,并获得良好的催化效果,将实验室筛选出的钨钒钛催化剂负载到不同载体上,研究催化剂负载量及不同负载方法对降解邻二氯苯催化效率的影响。采用溶胶-凝胶-浸渍法和直接浸渍法在堇青石蜂窝陶瓷上负载V_2O_5/WO_3/TiO_2催化剂,用X射线衍射、扫描电镜和X射线能量色散谱对制备的催化剂进行表征,结果表明,直接浸渍法在堇青石蜂窝陶瓷上负载的V_2O_5/WO_3/TiO_2催化剂含量比溶胶-凝胶-浸渍法负载的含量高,粒度较小,表面光滑无缝隙,活性成分V和W分散较好,催化活性高,在(250~350)℃邻二氯苯去除率大于95%,直接浸渍法负载的催化剂与堇青石的最佳质量比为1:100。  相似文献   

11.
Steam reforming of ethanol, C2H5OH+H2O→2CO+4H2, was carried out over Co/Al2O3, Co/SiO2, Co/MgO, Co/ZrO2 and Co/C. The properties of the Co catalysts were greatly affected by the supports. Co/Al2O3 exhibited the highest selectivity for steam reforming of ethanol by suppression of methanation of CO and decomposition of ethanol. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The adsorption and reaction of CO, CO2 and O2 on TiO2 and Au/TiO2 have been studied using a mass spectrometric method which can detect processes occurring on a time scale of seconds. Adsorption of CO on TiO2 at 300 K is rapidly reversible and less on reduced samples than oxidised ones indicating that the adsorption sites are oxide ions. The amount adsorbed reversibly on reduced Au/TiO2 is less still, consistent with enhanced reduction, but additional amounts adsorb irreversibly at a slower rate. The amount of CO2 adsorbed under similar conditions is also greater on TiO2 than reduced Au/TiO2 and approximately one order of magnitude greater than that of CO. However, adsorption of O2 is undetectable on the time scale of the measurement. Exposure of Au/TiO2 to mixtures of CO and O2 results in near instantaneous generation of CO2 although its appearance is attenuated by adsorption. Adsorption of CO occurs concurrently in a way similar to that seen with CO alone except that the amount of the more slowly adsorbed form seems less. This suggests that it is the form utilised in catalysis. Oxygen uptake beyond that generating CO2 is appreciable during the initial stages of exposure to reaction mixtures and this capacity is enhanced if one or other reactant is removed and then reintroduced, possibly due to the generation of reducible interface sites. It is concluded that the remarkable activity of Au/TiO2 for CO oxidation at ambient temperature resides in a very high turnover frequency on sites at the interface between the metal and oxide. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
The physico-chemical properties and activity of Ce-Zr mixed oxides, CeO2 and ZrO2 in CO oxidation have been studied considering both their usefulness as supports for Au nanoparticles and their contribution to the reaction. A series of Ce1−xZrxO2 (x = 0, 0.25, 0.5, 0.75, 1) oxides has been prepared by sol–gel like method and tested in CO oxidation. Highly uniform, nanosized, Ce-Zr solid solutions were obtained. The activity of mixed oxides in CO oxidation was found to be dependent on Ce/Zr molar ratio and related to their reducibility and/or oxygen mobility. CeO2 and Ce0.75Zr0.25O2, characterized by the cubic crystalline phase show the highest activity in CO oxidation. It suggests that the presence of a cubic crystalline phase in Ce-Zr solid solution improves its catalytic activity in CO oxidation. The relation between the physico-chemical properties of the supports and the catalytic performance of Au/Ce1−xZrxO2 catalysts in CO oxidation reaction has been investigated. Gold was deposited by the direct anionic exchange (DAE) method. The role of the support in the creation of catalytic performance of supported Au nanoparticles in CO oxidation was significant. A direct correlation between activity and catalysts reducibility was observed. Ceria, which is susceptible to the reduction at the lowest temperature, in the presence of highly dispersed Au nanoparticles, appears to be responsible for the activity of the studied catalysts. CeO2-ZrO2 mixed oxides are promising supports for Au nanoparticles in CO oxidation whose activity is found to be dependent on Ce/Zr molar ratio.  相似文献   

14.
Au/CeO2 catalysts prepared by co-precipitation (CP) and deposition-precipitation (DP) methods were tested for low temperature CO oxidation reaction. The structural characters and redox features of the catalysts were investigated by XRD, XPS and H2-TPR. Their catalytic performances for low temperature CO oxidation were studied by means of a microreactor -GC system. It showed that the catalytic activities of Au/CeO2 catalysts greatly depended on the preparation method. The catalysts prepared by DP method exhibited a surprisingly higher activity towards CO oxidation than that prepared by CP method. This may arise from the differences in the particle sizes of Au and redox properties of the catalysts. The low Au loading and the resistance to high temperature of DP-prepared catalyst made it more applicable.  相似文献   

15.
A number of anions and cations have been incorporated into TiO2 as support for gold catalysts and also into as-prepared Au/TiO2 catalysts at levels of 0.4 mol% and 2.5 mol% with respect to the support. The activities of the catalysts for CO oxidation reveal that the at the higher concentration level of the ions, in all cases, a decrease in activity compared with unmodified Au/TiO2. However, and more interestingly, addition of only 0.4 mol% of the ions to the support, prior to gold addition, in most cases resulted in activity enhancement whilst similar addition to Au/TiO2 resulted in decrease in activity. Attempts have been made to understand the origin of these effects.  相似文献   

16.
采用溶胶凝胶法制备了栽体TiO2,在负栽Mn(Ac):制备Mn/TiO2时掺杂cu,制备了Mn—Cu/TiO2催化剂。考虑了cu的掺杂量、活性组分负载量、焙烧温度等制备条件对其催化氧化No性能的影响。结果表明,最佳条件下制备的催化剂,在反应温度200℃、空速41000h~、No浓度为300×10-6(书)及O2含量为10%条件下,NO氧化率可迭53.08%,250℃时NO氧化率达到74.76%。在220℃以上时H2O对其影响较小,但其抗硫性能还有待进一步研究提高。  相似文献   

17.
Xin Zhang  Hui Shi  Bo-Qing Xu   《Catalysis Today》2007,122(3-4):330-337
This work investigates the effects of Au3+/Au0 ratio or distribution of gold oxidation states in Au/ZrO2 catalysts of different gold loadings (0.01–0.76% Au) on CO oxidation and 1,3-butadiene hydrogenation by regulating the temperature of catalyst calcination (393–673 K) and pre-reduction with hydrogen (473–523 K). The catalysts were prepared by deposition–precipitation and were characterized with elemental analysis, nitrogen adsorption/desorption, TEM, XPS and TPR. The catalytic data showed that the exposed metallic Au0 atoms at the surface of Au particles were not the only catalytic sites for the two reactions, isolated Au3+ ions at the surface of ZrO2, such as those in the catalysts containing no more than 0.08% Au were more active by TOF. For 0.76% Au/ZrO2 catalysts having coexisting Au3+ and Au0, the catalytic activity changed differently with varying the Au3+/Au0 ratio in the two reactions. The highest activity for the CO oxidation reaction was observed over the catalyst of Au3+/Au0 = 0.33. However, catalyst with a higher Au3+/Au0 ratio showed always a higher activity for the hydrogenation reaction; co-existance of Au0 with Au3+ ions lowered the catalyst activity. Moreover, the coexisting Au particles changed the product selectivity of 1,3-butadiene hydrogenation to favor the formation of more trans-2-butene and butane. It is thus suggested that for better control of the catalytic performance of Au catalyst the effect of Au3+/Au0 ratio on catalytic reactions should be investigated in combination with the particle size effect of Au.  相似文献   

18.
TiO2 impregnated with AuCl3 was subjected to different pretreatments and then characterized by XPS and DRS. After drying at 298 K under vacuum, the catalyst contains highly dispersed, nonmetallic Au species; whereas drying at 393 K in an oven caused the Au to be partially reduced and agglomerate. Further treatments of the oven-dried sample at higher temperatures resulted in the disappearance of Au signals in XPS except the one after a HTR/C/LTR (high-temperature reduction/calcination/low-temperature reduction) sequence. The high-temperature reduction at 773 K shifted the plasmon resonance peak in DRS to higher wavelength, and the following C and LTR treatment did not change the peak position. This peak shifting is interpreted as a change in the electronic status of the Au. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
We review here our studies of the reactivity and sintering kinetics of model catalysts consisting of gold nanoparticles dispersed on TiO2(110). First, the nucleation and growth of vapor-deposited gold on this surface was experimentally examined using x-ray photoelectron spectroscopy and low energy ion scattering. Gold initially grows as two-dimensional islands up to a critical coverage, θ cr, after which 3D gold nanoparticles grow. The results at different temperatures are fitted well with a kinetic model, which includes various energetic parameters for Au adatom migration. Oxygen was dosed onto the resulting gold nanoparticles using a hot filament technique. The desorption energy of Oa was examined using temperature programmed desorption (TPD). The Oa is bonded ~40% more strongly to smaller (thinner) Au islands. Gaseous CO reacts rapidly with this Oa to make CO2, probably via adsorbed CO. The reactivity of Oa with CO increases with increasing particle size, as expected based on Br?nsted relations. Propene adsorption leads to TPD peaks for three different molecularly adsorbed states on Au/TiO2(110), corresponding to propene adsorbed on gold islands, to Ti sites on the substrate, and to the perimeter of gold islands, with adsorption energies of 40, 52 and 73 kJ/mol, respectively. Thermal sintering of the gold nanoparticles was explored using temperature-programmed low-energy ion scattering. These sintering rates for a range of Au loadings at temperatures from 200 to 700 K were well fitted by a theoretical model which takes into consideration the dramatic effect of particle size on metal chemical potential using a modified bond additivity model. When extrapolated to simulate isothermal sintering at 700 K for 1 year, the resulting particle size distribution becomes very narrow. These results question claims that the shape of particle size distributions reveal their sintering mechanisms. They also suggest why the growth of colloidal nanoparticles in liquid solutions can result in very narrow particle size distributions.  相似文献   

20.
Au改性La0.8Sr0.2MnO3催化剂的催化燃烧性能   总被引:3,自引:0,他引:3       下载免费PDF全文
采用共沉淀(CP)和沉积-沉淀法(DP)分别制备了0.5%(质量分数)金掺杂的Au-LSM和Au/LSM钙钛矿催化剂,以甲苯催化燃烧为模型反应测试催化剂活性,并用XRD、BET、H2-TPR对其进行表征。结果表明,Au掺杂并不改变La0.8Sr0.2MnO3催化剂的织构性质,但明显增强了催化剂表面氧的活动性,提高了其低温催化氧化活性。与DP法制备的Au/LSM相比,Au-LSM表现出更好的催化性能,其催化活性与商业贵金属Pd/Al2O3相当。通过对焙烧温度考察以及50 h的变温活性测试,Au-LSM催化性能并没有发生较大变化,催化剂具有良好的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号