首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
以树干毕赤酵母m4为发酵菌株,在5 L发酵罐条件下进行补料分批发酵木糖产乙醇工艺研究,以期提高发酵水平和乙醇浓度.结果表明,补料发酵时木糖初始浓度108 g/L,总浓度150g/L,发酵周期84 h;在发酵36 h时一次性补糖,酵母生长旺盛,产乙醇量最高为53.4 g/L,而补加木糖与全料培养基相比,最终乙醇浓度变化不大;在36 h前后分两次补料时,木糖转化乙醇的速率较大,乙醇产量最高为54.9 g/L.与150 g/L、108 g/L分批发酵相比,乙醇质量浓度分别提高了11.1%、19.3%.结果表明采用补料工艺可以进一步提高乙醇的产量.  相似文献   

2.
从水果中筛选出一株野生型酵母S3,并将其运用于膜牛物反应器封闭循环乙醇发酵.运用酵母S3进行了3次摇瓶发酵实验,得到细胞浓度、乙醇产率以及葡萄糖转化率的最大值分别为:5.37g/L,1.90g/(L·h),87.9%;将S3菌株接人膜牛物反应器封闭循环发酵系统,进行了524.4 h的封闭循环发酵实验,整个发酵过程乙醇产率为1.48g/(L·h).葡萄糖消耗速率为3.55g/(L·h),发酵结束时,细胞存活率为30%,葡萄糖转化率为81.4%,均高于菌株SO的发酵结果,乙醇-细胞比产率以及乙醇-细胞得率分别为0.148 g/(g·h)和77.63 g/g,分别是菌株SO的1.57倍和1.71倍.结果表明,酵母菌在膜生物反应器封闭循环发酵过程中有被定向驯化以适应此发酵环境的可能性,并且野生酵母S3比工业安琪酵母SO更容易被定向驯化.  相似文献   

3.
为研究不同初始总糖浓度对木薯全渣乙醇发酵过程中糖消耗、酵母细胞生长以及乙醇积累的影响,采取分批发酵方式,间隔6 h取样检测.结果表明:初始总糖浓度253.75 g/L时,发酵效率最高(88.93%),乙醇生成速率、糖消耗速率、酵母数在初总糖浓度183.75 g/L时最大,分别为7.10 g/(L·h),13.88 g/(L·h),4.94×108个/mL;提高初始总糖浓度,糖消耗的终点时间、酵母生长到达最大值的时间、乙醇发酵时间延长,糖消耗速率、糖利用、酵母数、乙醇生成速率下降,乙醇发酵效率先升高后下降.  相似文献   

4.
研究了前体物质和碳氮源补加策略对钝齿棒杆菌Corynebacterium crenatumSYAN7发酵生产L-精氨酸的影响。结果表明,发酵24h后添加前体物质谷氨酸,以初始硫酸铵质量浓度20g/L,分别于24、48h补加20g/L硫酸铵的补氮方式,和以初始葡萄糖质量浓度100g/L,分别于24、48、72h均匀添加葡萄糖,使总糖质量浓度达175g/L的补碳方式,摇瓶发酵96h后,L-精氨酸产量最高达37.8g/L。  相似文献   

5.
对产海藻糖酿酒酵母进行培养条件优化,得到的最适条件为:每升发酵液中葡萄糖10 g,酵母膏7.5 g,尿素7.5 g,KH2PO42.5 g,Na2HPO42.5 g,微量元素液7.5 mL,发酵初始pH为7.0,对数生长期培养温度选择30℃,稳定期培养温度37℃,装液体积分数40%。摇瓶优化后海藻糖质量比为152 mg/g,约为优化前的2.3倍。选用最优条件在5 L发酵罐中进行培养,培养过程中两次补料,确定最佳培养时间为52 h,在该时间海藻糖产量为1 072 mg/L,比摇瓶中培养的最高值831mg/L高出241 mg/L。  相似文献   

6.
针对麦芽糖的生产存在葡萄糖、麦芽三糖、四糖等低聚糖以及多糖等副产物,高浓度麦芽糖生产效率低的工业难题,筛选了一株寡糖特异性麦芽糖酶生产菌,该酶具有将麦芽低聚糖降解并生成葡萄糖和麦芽糖的能力。该菌株最佳产酶条件为:以麦芽低聚糖作为碳源,碳源的质量浓度为50 g/L,以酵母浸粉作为氮源,氮源的质量浓度为2.0 g/L,发酵时间为24 h,温度为37℃,培养基初始pH为6.5。  相似文献   

7.
重组大肠杆菌生产人表皮生长因子的发酵条件   总被引:2,自引:0,他引:2  
通过质粒转化实验,获得了较好的产hEGF重组菌,对重组菌发酵进行优化,获得最佳初始糖质量浓度为5g/L、蛋白胨20g/L、酵母抽提物10g/L、(NH4)2HPO43.5g/L、Amp100mg/L;最佳接种时间为种子液生长到5-6h,即菌体OD值在1.0-2.0;诱导剂最佳添加时间为8h,即菌体OD值在8.0左右,通过流加发酵进行高密度培养,可使重组菌的hEGF的产率达102mg/L,比优化前提高了近30%。  相似文献   

8.
利用马克斯克鲁维酵母,通过联合生物加工(CBP)技术发酵菊芋生料生成乙醇.在相同的发酵工艺条件下,分别考察四种搅拌桨对乙醇发酵的影响,包括发酵液的混合情况及乙醇浓度、醪液的黏度等参数的变化.结果表明:三叶推进式搅拌桨能够明显提高乙醇产量,并减少发酵液静止区的体积,拆除挡板更适合高浓度菊芋生料的发酵.发酵初始干粉浓度为201 g/L,补料后菊芋干粉终浓度达到273 g/L时,48 h乙醇浓度达到78.11 g/L,乙醇对糖的得率为0.440 7,为理论值的86.25%.此工艺为菊芋乙醇工业化的生产提供了有利条件.  相似文献   

9.
鞘细菌液体发酵生产PHB的研究   总被引:1,自引:0,他引:1  
通过摇瓶培养鞘细菌,采用次氯酸钠.氯仿法提取PHB,浓硫酸氧化.紫外分光光度计法测定PHB含量,研究碳源、氮源、初始pH、温度、装液量及发酵时间等因素对生物量和PHB产量的影响.结果表明:以甘油和蛋白胨为碳源和氮源,适宜质量浓度分别为50 g/L和3.0g/L,其他适宜营养条件为MgSO4.7H2O 0.2 g/L,CaCl2 0.05 g/L,FeCl3 0.01 g/L,KH2PO4 0.07 g/L,H3BO30.005 g/L;适宜pH值7.0;适宜温度35℃,接种量1.0%,用250mL三角瓶装100 mL发酵液.发酵至54 h时开始限氧,发酵72 h.在上述条件下100 mL发酵液的PHB产量最高可达10.58 mg.  相似文献   

10.
以苹果汁为原料,研究了裂殖酵母的生长规律,在此基础上,通过产气和细胞生长考察了裂殖酵母对糖、酒精、二氧化硫和乙酸的耐受性。结果表明,较高浓度的葡萄糖、酒精、二氧化硫和乙酸都会抑制酵母菌的生长与发酵。与初始葡萄糖质量浓度为100g/L相比,裂殖酵母在初始葡萄糖质量浓度高于180g/L的YPD培养基中培养24~36h的产气量明显减少,培养48h的菌体密度下降40%。与不加酒精相比,裂殖酵母在初始酒精体积分数大于6%的苹果汁中培养24~48h的产气能力明显降低,培养48h的菌体密度下降70%。与不加二氧化硫相比,裂殖酵母在初始二氧化硫质量浓度超过0.15g/L的苹果汁中培养24~48h的产气量无显著变化,培养48h的菌体密度下降30%。与不加乙酸相比,裂殖酵母在初始乙酸体积分数为1%的苹果汁中培养24~48h的产气能力迅速减小,培养48h的菌体密度下降50%。  相似文献   

11.
高密度发酵是提高发酵产品、产量的一个非常有效的手段。对一株巴斯德毕赤酵母的植酸酶工程菌Gs115 /phyAⅡ ,采用酵母高密度发酵方法 ,葡萄糖的补加采用逐渐增加的方式 ,控制溶氧和还原糖浓度 ,获得细胞密度为 80g/L。甲醇诱导后 ,最高植酸酶活力达到 4 .1× 10 4U/mL。  相似文献   

12.
固定化基因重组酵母发酵木糖产乙醇   总被引:2,自引:0,他引:2  
采用海藻酸钙凝胶包埋法固定基因重组酵母Sacchromyces cerevisiae ZU-10,研究了固定化细胞的发酵特性.结果表明,在30 ℃、pH 5.5下发酵80 g/L木糖,游离细胞的发酵周期为96 h,乙醇得率为0.37,细胞固定化后发酵周期缩短至60 h,乙醇得率提高到0.40.利用固定化细胞重复分批发酵8次,木糖利用率均在95%以上,平均乙醇得率为0.39.与游离细胞相比,固定化细胞对乙酸的耐受性明显增强,当质量浓度低于1.2 g/L时乙酸对木糖发酵的影响很小.利用固定化重组酵母发酵玉米秸秆水解液中的葡萄糖和木糖,36 h内65.0 g/L葡萄糖和27.0 g/L木糖被完全利用,生成36.9 g/L乙醇,对葡萄糖和木糖的乙醇得率为0.40.  相似文献   

13.
植酸酶毕赤酵母基因工程菌高密度发酵   总被引:5,自引:0,他引:5  
高密度发酵是提高发酵产品、产量的一个非常有效的手段。对一株巴斯德毕赤酵母的植酸酶工程菌Gs115 /phyAⅡ ,采用酵母高密度发酵方法 ,葡萄糖的补加采用逐渐增加的方式 ,控制溶氧和还原糖浓度 ,获得细胞密度为 80g/L。甲醇诱导后 ,最高植酸酶活力达到 4 .1× 10 4U/mL。  相似文献   

14.
以一株γ-聚谷氨酸高产菌枯草芽孢杆菌B-115为实验菌株,分别考察碳源、氮源种类及浓度、前体物添加量、生长因子和发酵条件对γ-聚谷氨酸产率的影响.优化结果显示:碳源是6.5%的玉米糖化液,氮源是0.4%的普通蛋白胨,前体物谷氨酸钠的添加量为4%,生长因子种类及添加量分别为0.15%硫酸镁、0.006%硫酸锰、0.8%磷酸二氢钾、1.0%氯化钠、0.03%氯化钙;发酵条件为初始pH值6.5,接种量2%,装液量50 mL/250 mL1,50 r/min3,7℃培养84 h;γ-聚谷氨酸的产率可从57.85 g/L提高到68.30 g/L.  相似文献   

15.
大豆乳清废水发酵生产单细胞蛋白的酵母   总被引:3,自引:0,他引:3  
为回收大豆乳清废水中的生物质资源,以白地霉(G.candidum link)、产朊假丝酵母(C.utilis)、热带假丝酵母(C.tropicalis)、解脂假丝酵母解脂变种(C.lipolytica var.lipolytica)和扣囊复膜孢酵母(S.fibuligera)5种常见的工业酵母菌,通过摇瓶发酵,进行大豆乳清废水的单细胞蛋白(SCP)生产试验研究.结果表明,被试5种酵母菌均能在大豆乳清废水中快速增殖,适宜的接种量为0.3~0.4 g/L;在废水COD质量浓度11150 mg/L、初始pH6.2、25℃、180 r/min等条件下发酵12 h,C.lipolytica var.lipolytica的细胞产量最高,可达2.35 g/L,对废水COD的去除率可达48.3%;在对数期生长期,S.fibuligera的细胞增殖速率、收获SCP的蛋白质含量和蛋白质产量分别为0.36 g/(L.h)、39.7%和0.88 g/L,居于被试5种酵母之首.C.lipolytica var.lipolytica和S.fibuligera是处理大豆乳清废水并回收SCP的最适酵母.  相似文献   

16.
为优化噬夏孢欧文氏菌合成玉米黄素二葡萄糖苷的最佳发酵条件,通过单因素实验,分析了碳源、氮源、培养基初始pH值、培养温度以及培养时间对噬夏孢欧文氏菌的生长和玉米黄素二葡萄糖苷产量的影响,同时,为确定最佳培养条件又进行了正交实验及结果分析。实验结果表明,所确定的噬夏孢欧文氏菌发酵生产玉米黄素二葡萄糖苷的最佳培养条件为:葡萄糖质量浓度为25g/L,酵母粉质量浓度为20g/L,初始pH值6.0,培养温度为30℃。同时,按此优化条件培养噬夏孢欧文氏菌培养发酵48h,得到玉米黄素二葡萄糖苷的产量比优化前提高了163%。该研究为玉米黄素二葡萄糖苷的工业化生产奠定了基础。  相似文献   

17.
以运动发酵单胞菌ATCC29121为菌种,以早籼米糖化液为原料发酵生产乙醇.通过单因素试验和正交设计试验,研究了发酵温度、pH值、初糖质量浓度、接种量、发酵时间等因素对该菌乙醇产率及生物量的影响.优化后的发酵条件:发酵温度为30℃,pH值为5.5,初糖质量浓度为100g/L,接种量为10%,发酵48h.在此条件下乙醇产率达0.4g乙醇/g葡萄糖,葡萄糖的转化率是80.1%.  相似文献   

18.
响应面设计法优化GST发酵培养基   总被引:1,自引:0,他引:1  
利用响应面方法对重组谷胱甘肽硫转移酶表达菌株E coliBL21(DE3)PGEX发酵生产谷胱甘肽硫转移酶(GST)的培养基进行了优化。用Plackett-Burman实验方法研究葡萄糖、酵母膏和MgSO4等20个营养因子对产GST活力的影响,结果表明主要影响因子为葡萄糖、酵母膏和MgSO4。根据实验结果对主要影响因子的浓度范围进行估计,然后用Box-Behnken设计及响应面分析确定主要影响因子的最佳浓度。结果表明当葡萄糖浓度为42.06 g/L,蛋白胨浓度为10g/L,酵母膏浓度为8.47 g/L,NaCl浓度为1 g/L,MgSO4浓度为1.62 g/L时,E coliBL21(DE3)PGEX产GST活力达到633.9 mmol/(L.h),较原始培养基的活力提高了63.75%。  相似文献   

19.
半纤维素水解液中抑制物对发酵生产木糖醇的影响   总被引:14,自引:1,他引:14  
以木糖为底物发酵生产木糖醇,考察了葡萄糖、阿拉伯糖、果糖等半纤维素糖类对木糖醇发酵动力学行为的影响,并确定了适宜起始木糖质量浓度为100 g/L.当发酵液中乙酸与糠醛的质量浓度分别超过1 g/L时,抑制作用逐渐增强,通过调节半纤维素水解液的起始pH值从4.0到6.0,可有效减轻乙酸对发酵的抑制作用.适量的K+、Mg2+、Na+等微量元素和H2PO4-离子对酵母具有较强的代谢调控作用,其中以Mg2+的影响最为显著.无机盐质量浓度在0~4 g/L内有利于木糖醇发酵.以合成培养基为底物发酵生产木糖醇,与半纤维素水解液的发酵结果相比,两者的动力学曲线较为符合,为进一步研究木糖醇发酵动力学提供了实验依据.  相似文献   

20.
枯草芽孢杆菌D—核糖摇瓶发酵条件的研究   总被引:2,自引:0,他引:2  
对枯草芽孢杆菌(Bacillus subtilis)S21进行了摇瓶条件下的D-核糖发酵条件的研究,主要考察了添加木糖、pH、溶氧水平以及采用补糖方式对发酵的影响,确定了D-核糖发酵的最佳工艺条件:D-木糖50g/L初始pH7.0,初始葡萄糖浓度为150g/L,碳酸钙20g/L,并在发酵36h后,在装液置为35mL的500mL三角瓶中添加0.75g/mL的葡萄糖溶液2mL,S2菌可积累D-核糖达51.1g/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号