首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
产电微生物与电池阳极之间的电子传递效率是影响微生物燃料电池(MFC)产电性能的重要因素之一.通过对阳极材料的改进和修饰可以有效地降低阳极反应的活化能垒,提高电子传递效率,进而提高MFC产电性能.详细介绍了近年来MFC阳极材料的国内外研究进展,并针对当前研究所面临的问题,提出了今后MFC阳极的发展方向.  相似文献   

2.
微生物燃料电池阳极修饰的研究进展   总被引:2,自引:0,他引:2  
微生物细胞与电池阳极之间的电子转移速率是影响微生物燃料电池(MFC)产电性能的重要因素之一.通过阳极修饰可以促进电子转移速率,进而提高MFC产电性能.综述了MFC阳极修饰的研究进展.  相似文献   

3.
孙扬  刘维平  徐杰 《水处理技术》2020,46(10):39-43,49
通过酸浸热处理及搅拌浸渍负载碳粉的方法制备改性碳纸,以此为阳极搭建双室微生物燃料电池(MFC),测试其产电性能及废水处理效果。结果表明,从产电性能来看,酸浸热处理改性碳纸、负载碳粉改性碳纸的最大输出电压为1.144、1.206 V,是未改性碳纸的1.4、1.48倍,最大功率密度分别为14.21、19.92 W/m~2,是未改性碳纸的1.39、1.95倍,产电能力有了较大提高,负载碳粉改性碳纸的MFC产电性能最好;从废水处理效果来看,酸浸热处理改性碳纸和负载碳粉改性碳纸的COD去除率分别为78.6%、78.5%,是未改性碳纸的1.46、1.44倍,二者均有着较好的废水处理效果。  相似文献   

4.
微生物燃料电池(MFCs)阳极性能受生物膜的影响,而生物膜则直接与阳极表面积有关。以不同长度和数量的碳纤维丝作为阳极,研究了阳极构造和表面积对MFC输出功率的影响。当阳极为单根长度为1 cm碳纤维丝时,MFC产生的最大功率密度最高,为10.50 W·m-2,随着碳纤维丝长度逐渐增加(2~14 cm),MFC产生的最大功率显著下降。以多根的长度为2 cm碳纤维丝构成阳极时,MFC的功率与根数(1~4根)呈正比,当采用4根2 cm纤维丝时,MFC的最大功率密度为2.92 W·m-2,该数值为单根8 cm碳纤维丝的2.78倍。观察碳纤维丝长度方向上的生物膜的分布表明:受碳纤维欧姆电阻的影响,在碳纤维丝电流引出端附近的生物量明显大于碳纤维其他地方,这说明:增加纤维丝长度虽可提高阳极的表面积,但并不能提高阳极的产电性能。  相似文献   

5.
微生物燃料电池阳极材料的修饰研究进展   总被引:1,自引:0,他引:1  
简要介绍了微生物燃料电池以及微生物燃料电池阳极材料,分别从碳纳米管、导电聚合物、石墨烯、金属及金属离子、中介体以及复合材料等方面介绍了目前微生物燃料电池阳极材料修饰的研究进展,最后展望了微生物燃料电池的应用前景。  相似文献   

6.
碳纤维阳极构造对微生物燃料电池性能的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
潘彬  孙丹  刘伟凤  叶遥立  郭剑  成少安 《化工学报》2014,65(8):3250-3254
微生物燃料电池(MFCs)阳极性能受生物膜的影响,而生物膜则直接与阳极表面积有关。以不同长度和数量的碳纤维丝作为阳极,研究了阳极构造和表面积对MFC输出功率的影响。当阳极为单根长度为1 cm碳纤维丝时,MFC产生的最大功率密度最高,为10.50 W·m-2,随着碳纤维丝长度逐渐增加(2~14 cm),MFC产生的最大功率显著下降。以多根的长度为2 cm碳纤维丝构成阳极时,MFC的功率与根数(1~4 根)呈正比,当采用4根2 cm纤维丝时,MFC的最大功率密度为2.92 W·m-2,该数值为单根8 cm碳纤维丝的2.78倍。观察碳纤维丝长度方向上的生物膜的分布表明:受碳纤维欧姆电阻的影响,在碳纤维丝电流引出端附近的生物量明显大于碳纤维其他地方,这说明:增加纤维丝长度虽可提高阳极的表面积,但并不能提高阳极的产电性能。  相似文献   

7.
微生物燃料电池(Microbial fuel cells,简称 MFCs)是一种生物电化学混合系统,利用微生物的氧化代谢作用将有机物或者无机物中的能量转化为电能,具有节能、减少污泥生成及能量转换的突出优势,目前得到研究者们的广泛关注。其中产电微生物是MFCs系统的核心组成部分,筛选及培养高效产电微生物对促进MFCs的产电性能具有重要作用。通过对产电微生物电子传递机制、产电微生物种类以及影响微生物产电的因素进行分析总结,综述了阳极产电微生物的最新研究进展,最后从微生物角度展望了未来的研究方向,以期为产电微生物在MFCs中的应用提供指导和支持。  相似文献   

8.
微生物燃料电池阳极材料的研究进展   总被引:1,自引:0,他引:1  
谢丽  程佳  马玉龙 《广东化工》2011,38(4):27-28,50
微生物细胞向阳极转移电子的能力是微生物燃料电池(microbial fuel cell,简称MFC)功率密度低的重要影响因素之一,高性能的MFC阳极要易于产电微生物细胞附着生长,易于电子从微生物细胞向阳极传递,同时要求阳极内部电阻小、导电性强、阳极电势稳定.文章综述了MFC阳极材料的研究进展.  相似文献   

9.
分别以相同投影面积的不同碳材料作阳极,以最大功率、阳极电势和内阻为评价指标,研究不同碳材料对海底微生物燃料电池(BMFCs)产电性能影响,利用塔菲尔曲线比较不同碳材料电化学活性.结果表明:碳纤维、碳毡、泡沫碳、碳棒做阳极时,稳定电位和启动时间基本相同;抗极化性能依次减弱;最大功率密度分别为45.79、22.16、16.85、6.17 mW/m2;电池内阻分别为:213、257、312、358Ω;最大交换电流密度分别为0.33、0.13、0.11、0.01 A/m2;组成电池的稳定输出功率分别为0.72、0.61、0.51、0.32 mW.阳极物质传递分析表明,BMFCs产电性能受阳极材料表面附着微生物数量和底物转移率影响.  相似文献   

10.
何万远  欧阳二明 《应用化工》2023,(8):2432-2436+2442
综述了不同种类阳极材料(碳基材料、金属基材料、改性材料、天然材料和新型材料)在微生物燃料电池中的研究进展,对阳极材料在微生物燃料电池中作用机理进行了总结。探究了不同阳极材料所产生的输出功率、功率密度、电压、电流密度以及对污染物的降解效果,分析了提升产能的原因。对微生物燃料电池阳极材料的不足之处进行了阐述,对其未来发展提出了展望。  相似文献   

11.
12.
微生物燃料电池阳极改性修饰最新研究进展   总被引:2,自引:0,他引:2  
阳极是影响微生物燃料电池性能的重要因素之一,开发简易、高效的阳极改性修饰方法对微生物燃料电池的实际应用具有关键作用。对目前微生物燃料电池阳极改性修饰的最新进展展开综述,总结了分析阳极材料的方法,并对阳极修饰方法未来发展趋势进行了展望。  相似文献   

13.
Non‐corrosive, carbon‐based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m‐2). Higher power was produced with microbes using SS (12 mW m‐2) or carbon cloth (880 mW m‐2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry  相似文献   

14.
A complete microbial fuel cell (MFC) operating under continuous flow conditions and using Chlorella vulgaris at the cathode and Saccharomyces cerevisiae at the anode was investigated for the production of electricity. The MFC was loaded with different resistances to characterise its power capabilities and voltage dynamics. A cell recycle system was also introduced to the cathode to observe the effect of microalgae cell density on steady‐state power production and dynamic voltage profiles. At the maximum microalgae cell density of 2140 mg/L, a maximum power level of 0.6 mW/m2 of electrode surface area was achieved. The voltage difference between the cathode and anode decreased as the resistance decreased within the closed circuit, with a maximum open circuit voltage (infinite resistance) of 220 mV. The highest current flow of 1.0 mA/m2 of electrode surface area was achieved at an applied resistance of 250 Ω.  相似文献   

15.
纳米材料修饰阳极可显著提高微生物燃料电池(MFC)性能,本研究主要探索了石墨烯、聚苯胺和石墨烯/聚苯胺复合修饰电极对MFC产电性能的影响。使用电化学方法电镀石墨烯于碳布表面,进一步通过原位聚合法制备聚苯胺来修饰碳布电极。将修饰电极装载入双室型MFC中,测量其产电性能,并对电极进行表征,测量电化学性能。通过扫描电镜观察到, 碳布能够被修饰上石墨烯和聚苯胺,并且聚苯胺附着于碳纤维或石墨烯薄层表面,形成棒状的纳米结构。产电性能方面,装载石墨烯/聚苯胺修饰电极的MFC最大输出电压最高,达到了(291±22)mV,比装载空白碳布电极的对照组MFC提高了175%以上。石墨烯/聚苯胺电极组MFC的最大输出功率密度同样最高,达到了(653 ± 25)mW·m-2,为空白碳布对照组的10.5倍。实验结果表明:石墨烯/聚苯胺复合修饰电极可有效利用石墨烯导电性好和聚苯胺生物相容性高的优点,显著提高MFC的产电性能。  相似文献   

16.
BACKGROUND: Pure terephthalic acid (PTA) is a petrochemical product of global importance and is widely applied as an important raw material in making polyester fiber and polyethylene terephthalate (PET) bottles. In this work, a single‐chamber microbial fuel cell (MFC) was constructed using terephthalic acid (TA) with a chemical oxygen demand (COD) concentration range from 500 mg L?1 to 3500 mg L?1 as the electron donor and strain PA‐18 as the biocatalyst. RESLUTS: In the single chamber MFC, several factors were examined to determine their effects on power output, including COD concentration and electrode spacing. The characteristic of the strain PA‐18 was further studied. Cyclic voltammetry showed that electrons were directly transferred onto the anode by bacteria in biofilms, rather than self‐produced mediators of bacteria in the solutions. Scanning electron microscopy (SEM) observation showed that the anodic electrode surface was covered by bacteria which were responsible for electron transfer. Direct 16s‐rDNA analysis showed that the PA‐18 bacteria shared 99% 16SrDNA sequence homology with Pseudomonas sp. CONCLUSIONS: Electricity generation from TA in MFC was observed for the first time. The maximum power density produced by TA was 160 mW m?2, lower than that achieved using domestic wastewater. This novel technology provided an economical route for electricity energy recovery in PTA wastewater treatment. High internal resistance was the major limitation. To further improve the power output, the electron transfer rate was accelerated by overexpression of membrane the protein gene of the strain PA‐18 and by reducing the electrolyte and mass transfer resistance by optimizing reactor configuration. Copyright © 2008 Society of Chemical Industry  相似文献   

17.
18.
由FeCl2、FeCl3、樟脑磺酸及苯胺合成Fe3O4/PANI,将Fe3O4/PANI粉末与碳粉按1∶1混合均匀,同聚四氟乙烯乳液调和后,压涂在石磨电极表面,制成Fe3O4/PANI复合阳极并测试其电化学性能。结果表明,改性后阳极表面细菌附着数量提高2倍多,有利于细菌附着。复合阳极抗极化性能明显提高,动力学活性明显增强,电流密度增加,最大功率密度提高到300 mW/m2。该复合阳极可望用于海泥电池的应用开发研究。  相似文献   

19.
杨杰男  付乾  李俊  张亮  熊珂睿  廖强  朱恂 《化工进展》2020,39(10):3987-3994
微生物燃料电池是一种处理废水同时产生电能的新型装置,阳极作为微生物燃料电池的重要组件极大地影响电池性能。针对微生物燃料电池传统三维电极结构不合理导致电极内部物质传输受限,电池功率密度较低的问题,本文采用3D打印技术并碳化的方式构建了结构可控的微生物燃料电池阳极,通过热重分析得到合适的碳化条件,并通过进一步的电化学分析和电极微观形貌拍摄研究了电极内部孔道结构对微生物生长情况和电池性能的影响。实验结果表明:电极孔径尺寸为0.4mm时,电池具有最优性能,其最大功率密度达12.85W/m2,比采用碳布阳极的MFC提升10倍,较采用碳毡阳极的燃料电池高38%;具有可控孔道结构电极的传荷阻抗和传质阻抗是限制电极性能的主要因素,通过优化孔道尺寸和结构分布可降低其传荷及传质阻抗,可以进一步提升电池性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号