首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a nonlinear size-dependent Euler–Bernoulli beam model is developed based on a strain gradient theory, capable of capturing the size effect. Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, the governing nonlinear partial differential equation of motion and the corresponding classical and non-classical boundary conditions are determined using the variational method. As an example, the free-vibration response of hinged-hinged microbeams is derived analytically using the Method of Multiple Scales. Also, the nonlinear size-dependent static bending of hinged-hinged beams is evaluated numerically. The results of the new model are compared with the results based on the linear strain gradient theory, linear and nonlinear modified couple stress theory, and also the linear and non-linear classical models, noting that the couple stress and the classical theories are indeed special cases of the strain gradient theory.  相似文献   

2.
The geometrically nonlinear governing differential equations of motion and the corresponding boundary conditions are derived for the mechanical analysis of Timoshenko microbeams with large deflections, based on the strain gradient theory. The variational approach is employed to achieve the formulation. Hinged-hinged beams are considered as an important practical case, and their nonlinear static and free-vibration behaviors are investigated based on the derived formulation.  相似文献   

3.
In this paper, the nonlinear size-dependent static and dynamic behaviours of a microelectromechanical system under an electric excitation are investigated. A microcantilever is considered for the modelling of the deformable electrode of the MEMS. The governing equation of motion is derived based on the modified couple stress theory (MCST), a non-classical model capable of capturing small-size effects. With the aid of a high-dimensional Galerkin scheme, the nonlinear partial differential equation governing the motion of the deformable electrode is converted into a reduced-order model of the system. Then, the pseudo-arclength continuation technique is used to solve the governing equations. In order to investigate the static behaviour and static pull-in instabilities, the system is excited only by the electrostatic actuation (i.e., a DC voltage). The results obtained for the static pull-in instability predicted by both the classical theory and MCST are compared. In the second stage of analysis, the nonlinear dynamic behaviour of the deformable electrode due to the AC harmonic actuation is investigated around the deflected configuration, incorporating size dependence.  相似文献   

4.
In this paper, a size-dependent formulation is presented for Timoshenko beams made of a functionally graded material (FGM). The formulation is developed on the basis of the modified couple stress theory. The modified couple stress theory is a non-classic continuum theory capable to capture the small-scale size effects in the mechanical behavior of structures. The beam properties are assumed to vary through the thickness of the beam. The governing differential equations of motion are derived for the proposed modified couple-stress FG Timoshenko beam. The generally valid closed-form analytic expressions are obtained for the static response parameters. As case studies, the static and free vibration of the new model are respectively investigated for FG cantilever and FG simply supported beams in which properties are varying according to a power law. The results indicate that modeling beams on the basis of the couple stress theory causes more stiffness than modeling based on the classical continuum theory, such that for beams with small thickness, a significant difference between the results of these two theories is observed.  相似文献   

5.
In the present paper, an attempt is made to numerically investigate the postbuckling response of nanobeams with the consideration of the surface stress effect. To accomplish this, the Gurtin–Murdoch elasticity theory is exploited to incorporate surface stress effect into the classical Euler–Bernoulli beam theory. The size-dependent governing differential equations are derived and discretized along with various end supports by employing the principle of virtual work and the generalized differential quadrature (GDQ) method. Newton’s method is applied to solve the discretized nonlinear equations with the aid of an auxiliary normalizing equation. After solving the governing equations linearly, to obtain each eigenpair in the nonlinear model, the linear response is used as the initial value in Newton’s method. Selected numerical results are given to show the surface stress effect on the postbuckling characteristics of nanobeams. It is found that by increasing the thickness of nanobeams, the postbuckling equilibrium path obtained by the developed non-classical beam model tends to the one predicted by the classical beam theory and this anticipation is the same for all selected boundary conditions.  相似文献   

6.
In this paper, the size-dependent static and vibration behavior of micro-beams made of functionally graded materials (FGMs) are analytically investigated on the basis of the modified couple stress theory in the elastic range. Functionally graded beams can be considered as inhomogeneous composite structures, with continuously compositional variation from usually a ceramic at the bottom to a metal at the top. The governing equations of motion and boundary conditions are derived on the basis of Hamilton principle. Closed-form solutions for the normalized static deflection and natural frequencies are obtained as a function of the ratio of the beam characteristic size to the internal material length scale parameter and FGM distribution functions of properties. The results show that the static deflection and natural frequencies developed by the modified couple stress theory have a significant difference with those obtained by the classical beam theory when the ratio of the beam characteristic size to the internal material length scale parameter is small.  相似文献   

7.
This paper initiates the theoretical analysis of nonlinear microbeams and investigates the static bending, postbuckling and free vibration. The nonlinear model is conducted within the context of non-classical continuum mechanics, by introducing a material length scale parameter. The nonlinear equation of motion, in which the nonlinear term is associated with the mean axial extension of the beam, is derived by using a combination of the modified couple stress theory and Hamilton’s principle. Based on this newly developed model, calculations have been performed for microbeams simply supported between two immobile supports. The static deflections of a bending beam subjected to transverse force, the critical buckling loads and buckled configurations of an axially loaded beam, and the nonlinear frequencies of a beam with initial lateral displacement are discussed. It is shown that the size effect is significant when the ratio of characteristic thickness to internal material length scale parameter is approximately equal to one, but is diminishing with the increase of the ratio. Our results also indicate that the nonlinearity has a great effect on the static and dynamic behaviors of microscale beams. To attain accurate and reliable characterization of the static and dynamic properties of microscale beams, therefore, both the microstructure-dependent parameters and the nonlinearities have to be incorporated in the design of microscale beam devices and systems.  相似文献   

8.
马连生 《工程力学》2012,29(10):1-4,12
该文导出了面内热载荷作用下, 梁在其过屈曲构形附近微幅振动的解析解。首先基于经典梁理论, 推导了控制轴向和横向变形的基本方程。然后, 将2 个非线性方程化为一个关于横向挠度的四阶非线性积分-微分方程。假设梁的振幅以及由此引起的附加应变为无限小, 另设其响应为谐振, 则该非线性积分-微分方程将化为两组耦合的微分方程:一组控制非线性静态响应;另一组就是叠加于梁屈曲构形之上的线性振动方程。直接求解这些问题, 可以得到梁热过屈曲构形以及固有频率的解析解, 这些解是外加热载荷的函数。该文得到的精确解可以用于验证或改进各类近似理论和数值方法。  相似文献   

9.
The forced-vibration problem of a layered composite cantilevered beam which includes the effects of torsion and warping is solved using a third-order shear deformation theory. The solution of the free-vibration problem in conjunction with the solution of its adjoint is used to solve for the forced response of the beam. This forced-vibration solution is used to calculate the displacements, zero-crossing rates and normal and transverse shear stress responses for beams subjected to temporally and spatially varying random transverse loads. The effect of including or excluding the effects of shear deformation on the calculated response quantities is examined for beams with different configurations. The results clearly show that the shear deformation effects cannot be ignored in the calculation of response and reliability of composite beams. Although the results are presented only for beams of uniform cross-section, the eigenfunctions developed here can be effectively used as comparison functions in a Rayleigh-Ritz type analysis of nonuniform beams.  相似文献   

10.

This paper investigates the postbuckling analysis of a viscoelastic microbeam embedded in a double layer viscoelastic foundation. This viscoelastic microbeam is modeled using the Kelvin–Voigt model and the modified couple stress theory. A material length scale parameter is utilized to describe the size-dependent behavior of the viscoelastic microbeam. The visco-Pasternak foundation used in this study contains a viscoelastic medium and a shear layer. This microbeam is subjected to an axial compressive load at the beam ends which can change as a function of time. According to the Euler–Bernoulli beam theory and von-Karman nonlinearity, the time-dependent equations of motion are derived by Hamilton’s principle. The nonlinear equations of motion are directly solved under the simply supported boundary condition. Both time-dependent deflection and viscoelastic buckling load are investigated. Finally, the influences of the material length scale parameter, parameters of the visco-Pasternak foundation and the material viscosity coefficient on the dynamic postbuckling response are studied.

  相似文献   

11.
Overall behaviour of a simply-supported singly-curved shallow sandwich panel under lateral loading is considered. Three types of linear models — general shell, shallow shell and curved plate theories — are employed to describe a static overall behaviour of such a panel. The shallow panel with a constant curvature loaded by a uniform pressure is used as a trial case to assess the accuracy of the models. A nonlinear model for a panel of arbitrary shape under an arbitrary loading is developed on the basis of the curved plate theory. A closed-form nonlinear analytic solution for the panel of constant curvature under a uniform lateral pressure is obtained, and its accuracy is estimated. An experimental investigation of a sandwich beam under a uniform lateral loading is carried out, and the data obtained are compared with the theoretical calculations.  相似文献   

12.
We study the theory of the basic vibration characteristics of a circular cylindrical shell piezoelectric transducer. The linear theory of piezoelectricity is used. Both the free-vibration solution for resonant frequencies and modes as well as the electrically forced-vibration solution for admittance are obtained. Numerical results are presented.  相似文献   

13.
The size-dependent internal energy transfer in the nonlinear dynamical behaviour of a microcantilever with an intermediate spring-support is investigated. A geometric size-dependent nonlinearity due to large changes in the curvature is taken into account in the longitudinal and transverse motions. Based on the modified couple stress theory, the potential energy of the system is developed; the kinetic energy is also constructed in term of the displacement field. The energy terms are balanced with the potential energy stored in the intermediate spring-support. The centreline-inextensibility assumption is applied leading to the continuous model of the system involving nonlinear inertial components as well as size-dependent nonlinear curvature components. Based on a weighted-residual technique, the continuous model is reduced and the resultant truncated model is solved via use of a continuation technique. The linear component of the truncated model is solved through an eigenvalue extraction method in order to verify the occurrence of internal energy transfer and modal interaction mechanisms. For the system tuned to internal resonances, the highly nonlinear dynamical response is obtained, taking into account both inertial and geometric (due to large rotations) nonlinearities. It is shown that taking into account the length-scale parameter changes the internal energy transfer mechanisms significantly.  相似文献   

14.
This paper investigates the nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory and Timoshenko beam theory. The piezoelectric nanobeam is subjected to an applied voltage and a uniform temperature change. The nonlinear governing equations and boundary conditions are derived by using the Hamilton principle and discretized by using the differential quadrature (DQ) method. A direct iterative method is employed to determine the nonlinear frequencies and mode shapes of the piezoelectric nanobeams. A detailed parametric study is conducted to study the influences of the nonlocal parameter, temperature change and external electric voltage on the size-dependent nonlinear vibration characteristics of the piezoelectric nanobeams.  相似文献   

15.
In this paper, the size-dependent free vibration of magneto-electro-elastic (MEE) nanobeams in thermal environment is investigated. Size effects are taken into account using the modified couple stress theory, which is capable of accounting for higher-order electromechanical coupling, and the equations are developed on the basis of Euler–Bernoulli beam model and using von Karman nonlinear strain. The vibration of hinged–hinged nanobeams is investigated by way of example. Effects of various parameters such as temperature, thickness, and length on natural frequencies are demonstrated, and it is indicated that increased length and decreased thickness lead to decreased nanobeam natural frequencies.  相似文献   

16.
Thermoelectric-mechanical vibration behavior of functionally graded piezoelectric (FGP) nanobeams is first investigated in this article, based on the nonlocal theory and third-order parabolic beam theory by presenting a Navier-type solution. Electro-thermo-mechanical properties of a nanobeam are supposed to change continuously throughout the thickness based on the power-law model. To capture the small-size effects, Eringen's nonlocal elasticity theory is adopted. Using Hamilton's principle, the nonlocal governing equations for the third-order, shear deformable, piezoelectric, FG nanobeams are obtained and they are solved applying an analytical solution. By presenting some numerical results, it is demonstrated that the suggested model presents accurate frequency results of FGP nanobeams. The influences of several parameters, including external electric voltage, power-law exponent, nonlocal parameter, and mode number on the natural frequencies of the size-dependent FGP nanobeams are discussed in detail. The results should be relevant to the design and application of the piezoelectric nanodevices.  相似文献   

17.
由于功能梯度材料结构沿厚度方向的非均匀材料特性,使得夹紧和简支条件的功能梯度梁有着相当不同的行为特征。该文给出了热载荷作用下,功能梯度梁非线性静态响应的精确解。基于非线性经典梁理论和物理中面的概念导出了功能梯度梁的非线性控制方程。将两个方程化简为一个四阶积分-微分方程。对于两端夹紧的功能梯度梁,其方程和相应的边界条件构成微分特征值问题;但对于两端简支的功能梯度梁,由于非齐次边界条件,将不会得到一个特征值问题。导致了夹紧与简支的功能梯度梁有着完全不同的行为特征。直接求解该积分-微分方程,得到了梁过屈曲和弯曲变形的闭合形式解。利用这个解可以分析梁的屈曲、过屈曲和非线性弯曲等非线性变形现象。最后,利用数值结果研究了材料梯度性质和热载荷对功能梯度梁非线性静态响应的影响。  相似文献   

18.
This paper studies the free vibrations of finite, closed, circular cylindrical shells, made of one or more monoclinic layers. The study is based on the Love-type version of a unified shear-deformable shell theory. This theory enables the trial and testing of different through-thickness transverse shear-strain distributions and, among them, strain distributions that do not involve the undesirable implications of the transverse-shear correction factors. For flexural vibrations, the analytical solution of the corresponding axisymmetric solution is obtained, as a particular case, when it is assumed that the free-vibration pattern is independent of the circumferential co-ordinate parameter. If the appropriate material simplifications are employed, the present analysis yields, as a further particular case, the corresponding free-vibration solution that has already been presented elsewhere for cross-ply laminated cylindrical shells.  相似文献   

19.
桥梁结构边界条件变异对固有振动特性的影响分析   总被引:1,自引:0,他引:1  
施洲  赵人达 《振动与冲击》2007,26(2):141-145,170
针对实际桥梁结构复杂的边界条件,分析其对结构固有振动特性的影响因素。采用解析的方法分析简支梁在纵向不同程度的约束效应,以及简支梁、连续梁支承处不同刚度弹性扭转约束对结构自振特性的影响,并提出利用有限元分析来考虑复杂结构的边界条件变异影响的方法。最后以重庆轻轨PC梁以及一中承式拱桥的实测及计算固有频率结果验证了实际边界条件变化对固有频率的显著影响。  相似文献   

20.
Sun L  Han RP  Wang J  Lim CT 《Nanotechnology》2008,19(45):455706
We present a strain gradient (SG) theory to explain the strongly inverse size dependence between the elastic modulus and fiber diameter in polymeric nanofibers. For centrosymmetric and isotropic materials we showed that the three length-scale parameters can be combined into a single parameter that can be used to predict the onset of the size-dependent trend when the fiber diameter is reduced past its critical size. To address the issue of whether the SG offers a plausible explanation of the size-dependent behavior we conducted a series of uniaxial tensile and static bending tests involving polycaprolactone nanofibers. Since the elastic modulus is highly sensitive to the fiber diameter, it is necessary to correct the experimental data to account for the lack of circularity in the cross-section of the real fiber. Additionally, we applied the SG model to study the size-dependent elastic properties of polypyrrole nanotubes. By approaching the SG theory from a dynamics point of view, our model is able to capture size-dependent effects in the mechanics of fine-scale materials for both static and dynamic responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号