首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the study was to investigate whether the addition of extruded flaxseed (EF) in dairy cow diets had an effect on milk fat and individual fatty acids (FA) recovery in cheese after 90 d of ripening. Eighteen Holstein-Friesian cows, divided into 3 experimental groups (6 cows/group), were fed 3 isonitrogenous and isoenergetic diets with 0 (CTR), 500 (EF500), or 1,000 g/d (EF1000) of EF in 3 subsequent periods (2 wk/each), following a 3 × 3 Latin square design. Dry matter intake (DMI) and milk yield were recorded daily. Individual milk samples were collected on d 7 and 13 of each period to determine proximate and FA composition. Eighteen cheese-making sessions (2 for each group and period) were carried out, using a representative pooled milk sample obtained from the 6 cows of each group (10 L). At 90 d of ripening, cheeses were analyzed for proximate and FA composition. Cheese yield was computed as the ratio between the weights of ripened cheese and processed milk. Recoveries of fat, individual FA, and grouped FA were computed as the ratio between the corresponding weights in cheese and in milk. Inclusion of EF did not affect DMI, milk yield, or milk composition. Compared with CTR, the 2 diets containing EF increased the proportion of C18:3n-3 and total n-3 FA, in both milk and cheese. Cheese yield and cheese fat percentage did not differ among diets. Likewise, milk fat recovery in cheese was comparable in the 3 treatments and averaged 0.85. The recoveries of individual FA were, for the most part, not dissimilar from fat recovery, except for short-chain saturated FA (from 0.38 for C4:0 to 0.80 for C13:0), some long-chain saturated FA (0.56 and 0.62 for C20:0 and C21:0, respectively), and for C18:3n-6 (1.65). The recovery of saturated FA was lower than that of monounsaturated FA, whereas recovery of polyunsaturated FA was intermediate. Compared with medium- and long-chain FA, short-chain FA were recovered to a smaller extent in cheese. No differences in recovery were found between n-6 and n-3 FA. In conclusion, FA have different recoveries during cheese-making, with lower values for the short-chain compared with long-chain FA, and for saturated FA compared with unsaturated FA. The addition of EF in dairy cow diets did not influence cheese yield or fat recovery in cheese, irrespective of the inclusion level. The experiment confirmed that feeding cows with EF represents a successful strategy for improving the FA profile of dairy products, through an increase of n-3 FA.  相似文献   

2.
Four lactating Holstein cows fitted with ruminal and duodenal cannulas were used in a 4 x 4 Latin square design to determine the effects of feeding micronized and extruded flaxseed on milk composition and blood profile in late lactation. Four diets were formulated: a control (C) diet with no flaxseed, a raw flaxseed (RF) diet, a micronized flaxseed (MF) diet, and an extruded flaxseed (EF) diet. Flaxseed diets contained 12.6% flax-seed (dry matter basis). Experimental periods consisted of 21 d of diet adaptation and 7 d of data collection. Feeding flaxseed reduced milk yield and energy-corrected milk by 1.8 and 1.4 kg/d, respectively. Yields of milk protein and casein were also lower for cows fed flaxseed diets than for those fed the C diet. Milk yield (1.6 kg/d) and milk fat percentage (0.4 percentage unit) were lower for cows fed EF than those fed MF. Plasma cholesterol and nonesterified fatty acid concentrations were higher for cows fed flaxseed diets relative to those fed the C diet. Flaxseed supplementation decreased plasma concentrations of medium-chain (MCFA) and saturated (SFA) fatty acids and increased concentrations of long-chain (LCFA) and monounsaturated fatty acids. Feeding flaxseed reduced the concentrations of short-chain fatty acids (SCFA), MCFA, and SFA in milk fat. Consequently, concentrations of LCFA and unsaturated fatty acids were higher for cows fed flaxseed diets than for those fed the C diet. Flaxseed supplementation increased average concentrations of C(18:3) and conjugated linoleic acid by 152 and 68%, respectively. Micronization increased C(18:3) level, and extrusion reduced concentrations of SCFA and SFA in milk. It was concluded that feeding raw or heated flaxseed to dairy cows alters blood and milk fatty acid composition. Feeding extruded flaxseed relative to raw or micronized flaxseed had negative effects on milk yield and milk composition.  相似文献   

3.
《Journal of dairy science》2023,106(8):5416-5432
The objective of this study was to determine the effect of dietary supplementation of n-3 polyunsaturated fatty acids (PUFA) and n-6 PUFA on dry matter intake (DMI), energy balance, oxidative stress, and performance of transition cows. Forty-five multiparous Holstein dairy cows with similar parity, body weight (BW), body condition score (BCS), and milk yield were used in a completely randomized design during a 56-d experimental period including 28 d prepartum and 28 d postpartum. At 240 d of pregnancy, cows were randomly assigned to one of the 3 isoenergetic and isoprotein dietary treatments, including a control ration containing 1% hydrogenated fatty acid (CON), a ration with 8% extruded soybean (HN6, high n-6 PUFA source), and a ration with 3.5% extruded flaxseed (HN3; high n-3 PUFA source). The HN6 and HN3 diets had an n-6/n-3 ratio of 3.05:1 and 0.64:1 in prepartum cows and 8.16:1 and 1.59:1 in postpartum cows, respectively. During the prepartum period (3, 2, and 1 wk before calving), DMI, DMI per unit of BW, total net energy intake, and net energy balance were higher in the HN3 than in the CON and NH6 groups. During the postpartum period (2, 3, and 4 wk after calving), cows fed HN3 and HN6 diets both showed increasing DMI, DMI as a percentage of BW, and total net energy intake compared with those fed the CON diet. The BW of calves in the HN3 group was 12.91% higher than those in the CON group. Yield and nutrient composition of colostrum (first milking after calving) were not affected by HN6 or HN3 but milk yield from 1 to 4 wk of milking was significantly improved compared with CON. During the transition period, BW, BCS, and BCS changes were not affected. Cows fed the HN6 diet had a higher plasma NEFA concentration compared with the CON cows during the prepartum period. Feeding HN3 reduced the proportion of de novo fatty acids and increased the proportion of preformed long-chain fatty acids in regular milk. In addition, the n-3 PUFA-enriched diet reduced the n-6/n-3 PUFA ratio in milk. In conclusion, increasing the n-3 fatty acids concentration in the diet increased both DMI during the transition period and milk production after calving, and supplementing n-3 fatty acids was more effective in mitigating the net energy balance after calving.  相似文献   

4.
Flaxseed has been extensively used as a supplement for dairy cows because of its high concentrations of energy and the n-3 fatty acid (FA) cis-9,cis-12,cis-15 18:3. However, limited information is available regarding the effect of ground flaxseed on dry matter intake (DMI), ruminal fermentation, and nutrient utilization in grazing dairy cows. Twenty multiparous Jersey cows averaging (mean ± standard deviation) 111 ± 49 d in milk in the beginning of the study were used in a randomized complete block design to investigate the effects of supplementing herbage (i.e., grazed forage) with ground corn-soybean meal mix (control diet = CTRL) or ground flaxseed (flaxseed diet = FLX) on animal production, milk FA, ruminal metabolism, and nutrient digestibility. The study was conducted from June to September 2013, with data and sample collection taking place on wk 4, 8, 12, and 16. Cows were fed a diet formulated to yield a 60:40 forage-to-concentrate ratio consisting of (dry matter basis): 40% cool-season perennial herbage, 50% partial total mixed ration, and 10% of ground corn-soybean meal mix or 10% ground flaxseed. However, estimated herbage DMI averaged 5.59 kg/d or 34% of the total DMI. Significant treatment by week interactions were observed for milk and blood urea N, and several milk FA (e.g., trans-10 18:1). No significant differences between treatments were observed for herbage and total DMI, milk yield, feed efficiency, concentrations and yields of milk components, and urinary excretion of purine derivatives. Total-tract digestibility of organic matter decreased, whereas that of neutral detergent fiber increased with feeding FLX versus CTRL. No treatment effects were observed for ruminal concentrations of total volatile FA and NH3-N, and ruminal proportions of acetate and propionate. Ruminal butyrate tended to decrease, and the acetate-to-propionate ratio decreased in the FLX diet. Most saturated and unsaturated FA in milk fat were changed. Specifically, milk proportion of cis-9,cis-12,cis-15 18:3, Σn-3 FA, and Σ18C FA increased, whereas that of cis-9,cis-12 18:2, Σn-6 FA, Σ odd-chain FA, Σ<16C FA, and Σ16C FA decreased with feeding FLX versus the CTRL diet. In conclusion, feeding FLX did not change yields of milk and milk components, but increased milk n-3 FA. Therefore, costs and industry adoption of premiums for n-3-enriched milk will determine the adoption of ground flaxseed in pasture-based dairy farms.  相似文献   

5.
Flaxseed hull, a co-product obtained from flax processing, is a rich source of n-3 fatty acids (FA) but there is little information on its value for dairy production. Monensin supplementation is known to modify biohydrogenation of FA by rumen microbes. Therefore, the main objective of the experiment was to determine the effect of feeding a combination of monensin and flaxseed hulls on ruminal fermentation characteristics and FA profile of ruminal fluid and milk. Four ruminally fistulated multiparous Holstein cows averaging 665 ± 21 kg body weight and 190 ± 5 d in milk were assigned to a 4×4 Latin square design (28-d experimental periods) with a 2×2 factorial arrangement of treatments. Treatments were: 1) control, neither flaxseed hulls nor monensin; 2) diet containing (dry matter basis) 19·8% flaxseed hulls; 3) diet with monensin (16 mg/kg dry matter); 4) diet containing 19·8% (dry matter basis) flaxseed hulls and 16 mg monensin/kg. Flaxseed hull supplementation decreased the acetate to propionate ratio in ruminal fluid and monensin had no effect. Concentrations of trans-18:1 isomers (trans9,trans11,trans13/14+6/8) and cis9,12,15-18:3 in ruminal fluid and milk fat were higher and those of cis9,12-18:2 in milk fat tended (P=0·07) to be higher for cows supplemented with flaxseed hulls than for cows fed no flaxseed hulls. Monensin had little effect on milk fatty acid profile. A combination of flaxseed hulls and monensin did not result in better milk fatty acid profile than when feeding only flaxseed hulls.  相似文献   

6.
Sixteen Holsteins cows were used in a Latin square design experiment to determine the effects of extruded flaxseed (EF) supplementation and grain source (i.e., corn vs. barley) on performance of dairy cows. Extruded flaxseed diets contained 10% [dry matter (DM) basis] of an EF product that consisted of 75% flaxseed and 25% ground alfalfa meal. Four lactating Holsteins cows fitted with rumen fistulas were used to determine the effects of dietary treatments on ruminal fermentation. Intakes of DM (23.2 vs. 22.2 kg/d), crude protein (4.2 vs. 4.0 kg/d), and neutral detergent fiber (8.3 vs. 7.9 kg/d) were greater for cows fed EF diets than for cows fed diets without EF. Milk yield and composition were not affected by dietary treatments. However, 4% fat-corrected milk (30.5% vs. 29.6 kg/d) and solids-corrected milk (30.7 vs. 29.9 kg/d) were increased by EF supplementation. Ruminal pH and total volatile fatty acid concentration were not influenced by EF supplementation. However, feeding barley relative to corn increased molar proportions of acetate and butyrate and decreased that of propionate. Ruminal NH3-N was lower for cows fed barley than for cows fed corn. Milk fatty acid composition was altered by both grain source and EF supplementation. Cows fed EF produced milk with higher polyunsaturated and lower saturated fatty acid concentrations than cows fed diets without EF. Feeding EF or corn increased the milk concentration of C18:0, whereas that of C16:0 was decreased by EF supplementation only. Extruded flaxseed supplementation increased milk fat α-linolenic acid content by 60% and conjugated linoleic acid content by 29%. Feeding corn relative to barley increased milk conjugated linoleic acid by 29% but had no effect on milk α-linolenic concentration. Differences in animal performance and milk fatty acid composition were mainly due to EF supplementation, whereas differences in ruminal fermentation were mostly due to grain source.  相似文献   

7.
We aimed to compare the effects of ground (GC) or cracked corn (CC), with or without flaxseed oil (FSO), on milk yield, milk and plasma fatty acid (FA) profile, and nutrient digestibility in Jersey cows fed diets formulated to contain similar starch concentrations. Twelve multiparous organic-certified Jersey cows averaging (mean ± standard deviation) 455 ± 41.9 kg of body weight and 152 ± 34 d in milk and 4 primiparous organic-certified Jersey cows averaging (mean ± standard deviation) 356 ± 2.41 kg of body weight and 174 ± 30 d in milk in the beginning of the experiment were used. Cows were randomly assigned to treatment sequences in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Each period lasted 24 d with 18 d for diet adaptation and 6 d for data and sample collection. Treatments were fed as total mixed rations consisting of (dry matter basis): (1) 0% FSO + 27.1% GC, (2) 0% FSO + 28.3% CC, (3) 3% FSO + 27.1% GC, and (4) 3% FSO + 28.3% CC. All cows were offered 55% of the total diet dry matter as mixed grass-legume baleage and treatments averaged 20% starch. Significant FSO × corn grain particle size interactions were observed for some variables including milk concentration of lactose and proportions of cis-9,cis-12,cis-15 18:3 in milk and plasma. The proportion of cis-9,cis-12,cis-15 18:3 in milk and plasma decreased slightly when comparing GC versus CC in 0% FSO cows, but a larger reduction was observed in 3% FSO cows. Dry matter intake did not differ and averaged 16.1 kg/d across diets. Feeding 3% FSO increased yields of milk and milk fat and lactose and feed and milk N efficiencies, but decreased fat, true protein, and MUN concentrations and apparent total-tract digestibility of fiber. The Σ branched-chain, Σ<16C, Σ16C, and Σn-6 FA decreased, whereas Σ18C, Σcis-18:1, and Σtrans-18:1 FA increased in 3% versus 0% FSO cows. No effect of corn particle size was observed for production and milk components. However, the apparent total-tract digestibility of starch was greater in GC than CC cows. Compared with CC, GC increased Σ branched-chain, Σ<16C, Σ16C, Σn-6 FA, and decreased Σ18C and Σ cis-18:1 FA in milk fat. Overall, results of this study are more directly applicable to dairy cows fed low starch, mixed grass-legume baleage-based diets.  相似文献   

8.
The aim of this experiment was to study the effects of feeding different linseed sources on omasal fatty acid (FA) flows, and plasma and milk FA profiles in dairy cows. Four ruminally cannulated lactating Holstein-Friesian cows were assigned to 4 dietary treatments in a 4×4 Latin square design. Dietary treatments consisted of supplementing crushed linseed (CL), extruded whole linseed (EL), formaldehyde-treated linseed oil (FL) and linseed oil in combination with marine algae rich in docosahexaenoic acid (DL). Each period in the Latin square design lasted 21 d, with the first 16 d for adaptation. Omasal flow was estimated by the omasal sampling technique using Cr-EDTA, Yb-acetate, and acid detergent lignin as digesta flow markers. The average DM intake was 20.6 ± 2.5 kg/d, C18:3n-3 intake was 341 ± 51 g/d, and milk yield was 32.0 ± 4.6 kg/d. Milk fat yield was lower for the DL treatment (0.96 kg/d) compared with the other linseed treatments (CL, 1.36 kg/d; EL, 1.49 kg/d; FL, 1.54 kg/d). Omasal flow of C18:3n-3 was higher and C18:3n-3 biohydrogenation was lower for the EL treatment (33.8 g/d; 90.9%) compared with the CL (21.8 g/d; 94.0%), FL (15.5 g/d; 95.4%), and DL (4.6 g/d; 98.5%) treatments, whereas whole-tract digestibility of crude fat was lower for the EL treatment (64.8%) compared with the CL (71.3%), FL (78.5%), and DL (80.4%) treatments. The proportion of C18:3n-3 (g/100 g of FA) was higher for the FL treatment compared with the other treatments in plasma triacylglycerols (FL, 3.60; CL, 1.22; EL, 1.35; DL, 1.12) and milk fat (FL, 3.19; CL, 0.87; EL, 0.83; DL, 0.46). Omasal flow and proportion of C18:0 in plasma and milk fat were lower, whereas omasal flow and proportions of biohydrogenation intermediates in plasma and milk fat were higher for the DL treatment compared with the other linseed treatments. The results demonstrate that feeding EL did not result in a higher C18:3n-3 proportion in plasma and milk fat despite the higher omasal C18:3n-3 flow. This was related to the decreased total-tract digestibility of crude fat. Feeding FL resulted in a higher C18:3n-3 proportion in plasma and milk fat, although the omasal C18:3n-3 flow was similar or lower than for the CL and EL treatment, respectively. Feeding DL inhibited biohydrogenation of trans-11,cis-15-C18:2 to C18:0, as indicated by the increased omasal flows and proportions of biohydrogenation intermediates in plasma and milk fat.  相似文献   

9.
The objective of this experiment was to follow the time-course changes of the milk fatty acids (FA) and particularly conjugated linoleic acid (CLA), n-3, and n-6 FA in response to feeding whole rolled safflower seed (SS). Eighteen cows were blocked by milk production, days in milk, and parity, and randomly assigned to 1 of 3 diets by replacing whole cottonseed with SS. The control diet contained no SS (SS0), whereas the other diets contained 3% of dry matter as SS (SS3) or 6% SS (SS6). The study was conducted for 8 wk. Cows fed SS produced more milk than SS0, with SS3 producing more milk than SS6, but without a change in milk fat yield or milk fat %. Except for C8:0 FA, changes in milk FA were not observed until the third week of SS feeding. The C8:0 began decreasing during wk 1 of SS feeding and continued to decline to wk 8. Short-chain FA (C6:0 to C11:0) and medium-chain FA (C12:0 to C16:1) concentrations decreased in milk when cows were fed SS, whereas long-chain FA (C18:0 and higher) increased after wk 3. The milk long-chain FA increased from wk 3 until wk 5 and then reached a plateau with little difference between SS3 and SS6, whereas the short-chain FA decreased more in milk from cows fed SS6 than SS3. Total CLA increased slightly less than 5× in milk from cows fed SS compared with SS0. Over the same time frame, n-3 FA declined and n-6 FA increased in the milk from cows fed SS, with no difference between SS3 and SS6. This study indicated that SS fed at 3 and 6% of DM had the potential to increase milk production and the CLA in milk, but with a corresponding increase in n-6 FA.  相似文献   

10.
Four ruminally lactating Holstein cows averaging 602 ± 25 kg of body weight and 64 ± 6 d in milk at the beginning of the experiment were randomly assigned to a 4 × 4 Latin square design to determine the effects of feeding whole flaxseed and calcium salts of flaxseed oil on dry matter intake, digestibility, ruminal fermentation, milk production and composition, and milk fatty acid profile. The treatments were a control with no flaxseed products (CON) or a diet (on a dry matter basis) of 4.2% whole flaxseed (FLA), 1.9% calcium salts of flaxseed oil (SAL), or 2.3% whole flaxseed and 0.8% calcium salts of flaxseed oil (MIX). The 4 isonitrogenous and isoenergetic diets were fed for ad libitum intake. Experimental periods consisted of 21 d of diet adaptation and 7 d of data collection and sampling. Dry matter intake, digestibility, milk production, and milk concentrations of protein, lactose, urea N, and total solids did not differ among treatments. Ruminal pH was reduced for cows fed the CON diet compared with those fed the SAL diet. Propionate proportion was higher in ruminal fluid of cows fed CON than in that of those fed SAL, and cows fed the SAL and CON diets had ruminal propionate concentrations similar to those of cows fed the FLA and MIX diets. Butyrate concentration was numerically higher for cows fed the SAL diet compared with those fed the FLA diet. Milk fat concentration was lower for cows fed SAL than for those fed CON, and there was no difference between cows fed CON and those fed FLA and MIX. Milk yields of protein, fat, lactose, and total solids were similar among treatments. Concentrations of cis-9 18:1 and of intermediates of ruminal biohydrogenation of fatty acids such as trans-9 18:1 were higher in milk fat of cows fed SAL and MIX than for those fed the CON diet. Concentration of rumenic acid (cis-9, trans-11 18:2) in milk fat was increased by 63% when feeding SAL compared with FLA. Concentration of α-linolenic acid was higher in milk fat of cows fed SAL and MIX than in milk of cows fed CON (75 and 61%, respectively), whereas there was no difference between FLA and CON. Flaxseed products (FLA, SAL, and MIX diets) decreased the n-6 to n-3 fatty acid ratio in milk fat. Results confirm that flax products supplying 0.7 to 1.4% supplemental fat in the diet can slightly improve the nutritive value of milk fat for better human health.  相似文献   

11.
The objective of this study was to examine the incorporation of dietary n-3 fatty acids (FAs) into ovarian compartments and the effects on hormonal and behavioral patterns around estrus. Multiparous 256-day pregnant cows were fed either a standard diet both prepartum and postpartum (PP) (control; n=22) or supplemented with extruded flaxseed (E-FLAX) providing C18:3n-3 at 172.2 and 402.5 g/day per cow prepartum and PP respectively (n=22). The estrous cycle was synchronized, and at day 7 of the cycle, the cows were injected with prostaglandin F(2)(α) (PGF(2)(α)) and then subjected to 5 days of intensive examination. Compared with those in the control, in the E-FLAX group, the interval from PGF(2)(α) injection to behavioral estrus peak tended to be longer (3.6 h; P<0.1), that to estradiol (E(2)) peak was 6.5 h longer (P<0.03), and that to LH peak tended to be longer (5.3 h; P<0.07). The durations of behavioral estrus and E(2) surge were longer, and the area under the E(2) curve was greater in the E-FLAX cows. Afterward, 7-8 days following behavioral estrus, follicular fluids (FFs) from >7 mm follicles were aspirated. The proportions of n-3 FA increased in plasma, FF, and granulosa cells in the E-FLAX group. The concentrations of PGE(2) in the E(2)-active follicles tended to be lower in the E-FLAX cows (P<0.06). In conclusion, several modifications in hormonal and behavioral estrus patterns were demonstrated in cows fed n-3 FA, which might be attributed to alterations in membrane FA composition and partly mediated by lower PGE(2) synthesis.  相似文献   

12.
Flax hull, a co-product obtained from flax processing, is a rich source of n-3 fatty acids (FA) but there is little information on digestion of flax hull based diets and nutritive value of flax hull for dairy production. Flax oil is rich in α-linolenic acid (LNA) and rumen bypass of flax oil contributes to increase n-3 FA proportions in milk. Therefore, the main objective of the experiment was to determine the effects of abomasal infusion of increasing amounts of flax oil on apparent digestibility, dry matter (DM) intake, milk production, milk composition, and milk FA profile with emphasis on the proportion of LNA when cows were supplemented or not with another source of LNA such as flax hull. Six multiparous Holstein cows averaging 650±36 kg body weight and 95±20 d in milk were assigned to a 6×6 Latin square design (21-d experimental periods) with a 2×3 factorial arrangement of treatments. Treatments were: 1) control, neither flax hull nor flax oil (CON), 2) diet containing (DM basis) 15·9% flaxseed hull (FHU); 3) CON with abomasal infusion of 250 g/d flax oil; 4) CON with abomasal infusion of 500 g/d flax oil; 5) FHU with abomasal infusion of 250 g/d flax oil; 6) FHU with abomasal infusion of 500 g/d flax oil. Infusion of flax oil in the abomasum resulted in a more pronounce decrease in DM intake for cows fed the CON diets than for those fed the FHU diets. Abomasal infusion of flax oil had little effect on digestibility and FHU supplementation increased digestibility of DM and crude protein. Milk yield was not changed by abomasal infusion of flax oil where it was decreased with FHU supplementation. Cows fed FHU had higher proportions of 18:0, cis9-18:1, trans dienes, trans monoenes and total trans in milk fat than those fed CON. Proportion of LNA was similar in milk fat of cows infused with 250 and 500 g/d flax oil in the abomasum. Independently of the basal diet, abomasal infusion of flax oil resulted in the lowest n-6:n-3 FA ratio in milk fat, suggesting that the most important factor for modification of milk FA profile was the amount of n-3 FA bypassing the rumen and not the amount of flax hull fed to dairy cows. Moreover, these data suggest that there is no advantage to supply more than 250 g/d of flax oil in the abomasum to increase the proportion of LNA in milk fat.  相似文献   

13.
《Journal of dairy science》2021,104(9):9813-9826
The present study investigated the effect of a high proportion of different forage species in the diet, parity, milking time, and days in milk (DIM) on milk fatty acid (FA) profile, and transfer efficiency of C18:2n-6, C18:3n-3, n-6, and n-3 in dairy cows. Swards with perennial ryegrass [early maturity stage (EPR) and late maturity stage (LPR)], festulolium, tall fescue (TF), red clover (RC), and white clover (WC) were cut in the primary growth, wilted, and ensiled without additives. Thirty-six Danish Holstein cows in an incomplete Latin square design were fed ad libitum with total mixed rations containing a high forage proportion (70% on dry matter basis). The total mixed rations differed only in forage source, which was either 1 of the 6 pure silages or a mixture of LPR silage with either RC or WC silage (50:50 on dry matter basis). Proportion of C18:2n-6 in milk FA was affected by diet, and RC and WC diets resulted in the highest proportion of C18:2n-6 in milk FA (21.6 and 21.8 g/kg of FA, respectively). The highest and lowest milk C18:3n-3 proportion was observed in WC and LPR, respectively. In addition, WC diet resulted in highest transfer efficiency of C18:3n-3 from feed to milk (12.2%) followed by RC diet (10.7%), whereas EPR diet resulted in the lowest transfer efficiency of C18:3n-3 (3.45%). The highest milk proportion of cis-9,trans-11 conjugated linoleic acid (CLA) was observed in cows fed TF (3.20 g/kg of FA), which was 23 to 64% higher than the proportion observed in the cows fed the other diets. The highest α-tocopherol concentration (µg/mL) in milk was observed in EPR (1.15), LPR (1.10), and festulolium (1.06). Primiparous cows showed higher proportion of cis-9,trans-11 CLA (2.63 g/kg of FA) than multiparous cows (2.21 g/kg of FA). Cows early in lactation had a higher proportion of long-chain FA in milk than cows later in lactation, as long-chain FA decreased with 0.184 g/kg of FA per DIM, whereas medium-chain FA increased with 0.181 g/kg of FA per DIM. Proportion of C18:2n-6 in milk from evening milking was higher than in milk from morning milking (16.7 vs. 15.8 g/kg of FA). In conclusion, the results showed that milk FA profile of cows was affected by forage source in the diet, and RC and WC increased the health-promoting FA components, particularly n-3, whereas the TF diet increased proportion of CLA isomers in milk. Proportion of CLA isomers in milk FA from primiparous cows was higher than in milk from multiparous cows. In addition, evening milk contained more FA originating from diets compared with morning milk.  相似文献   

14.
The objectives were to evaluate the effect of supplementing saturated or unsaturated long-chain fatty acids (FA) to nulliparous and parous Holstein animals (n = 78) during late gestation on FA profile of colostrum and plasma of newborn calves and on production and absorption of IgG. The saturated FA supplement (SAT) was enriched in C18:0 and the unsaturated FA supplement (ESS) was enriched in the essential FA C18:2n-6. Fatty acids were supplemented at 1.7% of dietary dry matter to low-FA diets (1.9% of dietary dry matter) during the last 8 wk of gestation. Calves were fed 4 L of colostrum within 2 h of birth from their own dam or from a dam fed the same treatment. Feeding fat did not affect prepartum dry matter intake, body weight change, or gestation length. Parous but not nulliparous dams tended to give birth to heavier calves if fed fat prepartum. Parous dams were less able to synthesize essential FA derivatives, as evidenced by lower desaturase indices, compared with nulliparous dams, suggesting a greater need for essential FA supplementation. The FA profile of colostrum was modified to a greater degree by prepartum fat feeding than was that of neonatal calf plasma. The placental transfer and synthesis of elongated n-3 FA (C20:5, C22:5, and C22:6) were reduced, whereas the n-6 FA (C18:2, C18:3, and C20:3) were increased in plasma of calves born from dams fed ESS rather than SAT. Supplementing unsaturated FA prepartum resulted in elevated concentrations of trans isomers of unsaturated monoene and diene FA, as well as C18:2n-6 in colostrum. Serum concentrations of IgG tended to be increased in calves born from dams fed fat compared with those not fed fat, and prepartum feeding of SAT tended to improve circulating concentrations of IgG in newborn calves above the feeding of ESS. Apparent efficiency of absorption of IgG was improved in calves born from dams fed fat, and SAT supplementation appeared more effective than supplementation with ESS. Feeding SAT prepartum may be of greater benefit based upon greater circulating IgG concentrations of calves after colostrum feeding. Feeding moderate amounts of saturated or unsaturated long-chain FA during the last 8 wk of gestation changed the FA profile of colostrum and plasma of neonates to reflect that of the supplements.  相似文献   

15.
The variation in maturity at harvest during grain filling has a major effect on the carbohydrate composition (starch:NDF ratio) and fatty acid (FA) content of corn silages, and can alter the FA composition of milk fat in dairy cows. This study evaluated the effect of silage corn (cv. Atrium) harvested and ensiled at targeted DM contents of 300, 340, 380, and 420 g/kg of fresh weight and fed to dairy cows in combination with a highly degradable carbohydrate (HC) or low-degradable carbohydrate concentrate, on the nutrient intake, milk yield, and composition of milk and milk fat. Sixty-four multiparous Holstein-Friesian dairy cows in their first week of lactation were assigned to the 8 dietary treatments according to a randomized complete block design. The 8 dietary treatments consisted of a factorial combination of the 4 corn silages and the 2 concentrates. Corn silages were offered ad libitum as part of a basal forage mixture, whereas the concentrates were given at the rate of 8.5 kg of DM/cow per day during the 15-wk experimental period. Dry matter, crude protein, and energy intakes did not differ across the corn silages. However, the intake of starch increased, and those of NDF and C18:3n-3 decreased with increasing maturation. Milk yield and composition were not different across the corn silages. Yield (kg/d) of milk, protein, and lactose was higher for low-degradable carbohydrate compared with HC concentrate-fed groups. Increasing maturity of corn silages decreased the content of C18:3n-3 and total n-3 and increased the n-6:n-3 ratio in milk fat. Concentrate type significantly altered the composition of all trans FA, except C18:2 trans-9,12. Inclusion of the HC concentrate in the diets increased the contents of all C18:1 trans isomers, C18:2 cis-9,trans-11, and C18:2 trans-10,cis-12 conjugated linoleic acid in milk fat. Milk fat composition was strongly influenced by the stage of lactation (wk 3 to 10). The content of all even short- and medium-chain FA changed with lactation, except C8:0 and C10:0. The content of C12:0, C14:0, and C16:0 and total saturated FA increased and the content of C18:0, C18:1 cis total, and total cis monounsaturated FA decreased with lactation. Maturity of the corn silages at harvest did not affect the production performance of dairy cows, but resulted in a decreased content of C18:3n-3, total n-3, and an increased n-6:n-3 ratio in the milk fat of dairy cows.  相似文献   

16.
Flaxseed supplementation improves fatty acid profile of cow milk   总被引:2,自引:0,他引:2  
The objective of the study was to determine the effects of adding flaxseed or fish oil to the diet on the milk fatty acid profile of cows. The experiment was conducted in the summer of 2006 and involved 24 Friesian cows that were divided into 3 groups of 8 animals according to different type of fat supplementation: a traditional diet with no fat supplementation, a diet supplemented with whole flaxseed, and a diet supplemented with fish oil. Results suggested that whole flaxseed supplementation positively affects the milk fatty acid profile during summer. In particular, milk from cows receiving flaxseed supplementation showed a decrease in saturated fatty acid, an increase in monounsaturated fatty acid, and, together with the milk from fish oil-supplemented cows, an increase in polyunsaturated fatty acid content compared with milk from control cows. As expected, both fish oil and flaxseed supplementation increased the content of n-3 polyunsaturated fatty acids in milk fat. The increased dietary intake of C18:3 in flaxseed-supplemented cows resulted in increased levels of milk C18:1 trans-11 and increased conjugated linoleic acid C18:2 cis-9,trans-11 by Δ9-desaturase activity. Milk from flaxseed-supplemented cows together with the high conjugated linoleic acid content was characterized by low atherogenic and thrombogenic indices, suggesting that its use has less detrimental effects concerning the atherosclerosis and coronary thrombosis risk associated with the consumption of milk and dairy products. In conclusion, flaxseed supplementation improves composition and nutritional properties of milk from cows milked during times of high ambient temperature.  相似文献   

17.
The objectives of the present study were to evaluate the transfer efficiency of α-linolenic acid (ALA) from the abomasum into milk fat, its interaction with milk fat content and yield, and the relationship between ALA and C16:0 in milk fat. Three rumen-fistulated multiparous Holstein cows at midlactation were used in a 3×3 Latin square design. Treatments consisted of abomasal infusion of (1) 110mL of water/d (control), (2) 110mL of flaxseed oil/d (low flaxseed oil, LFO), and (3) 220mL of flaxseed oil/d (high flaxseed oil, HFO). Experimental periods were continued for 2 wk and fat supplements were infused abomasally during the last 7 d of each period. Average dry matter intake and milk yield were not affected by oil infusion. Milk fat and lactose content tended to be greater with flaxseed infusion compared with the control. Plasma ALA was 2.9- and 4.0-fold greater with LFO and HFO, respectively. The apparent transfer efficiency of ALA to milk was 44.8 and 45.7% with LFO and HFO, respectively. The C16:0 content in milk fat was decreased by 3.59 and 5.25 percentage units, whereas the ALA content was increased by 1.68 and 3.09 percentage units with LFO and HFO, respectively. Similarly, C18:2n-6 was increased by 0.95 and 1.31 percentage units with LFA and HFO, respectively, without changes in other fatty acids (FA). Total polyunsaturated FA was 4.4 and 2.7% lower in the HFO and LFO, respectively, than in the control. Furthermore, C16:0 content in the milk fat was reduced to a greater extent than the increase in ALA content, as a 1.68 and 3.09 percentage unit increase occurred in ALA compared with a 3.6 and 5.25 percentage unit decrease in C16:0 for LFO and HFO, respectively, such that a negative correlation existed between ALA and C16:0 (r=-0.72). In conclusion, abomasal infusion of flaxseed oil dramatically increased the ALA content in plasma and milk fat. Because the replacement of C16:0 with ALA and C18:2n-6 occurred without changes in other FA presumed to be synthesized de novo in the mammary gland, this suggests that the preformed C16:0 was replaced, rather than being caused, by an overall suppression of de novo FA synthesis in the mammary gland.  相似文献   

18.
The objective of this study was to determine the effect of different durations of n-3 supplementation during the peripartal period on production and reproduction performance of Holstein dairy cows. Thirty-two Holstein dry cows (16 multiparous and 16 primiparous) were blocked within parity for similar expected calving dates 8 wk before calving. Cows within blocks were assigned randomly to 1 of 4 treatments: (1) control without n-3 fatty acid (FA) supplementation during the dry period; (2) n-3 FA supplementation during the whole dry period (8 wk); and (3) n-3 FA supplementation during the early dry period (first 5 wk; far-off), or (4) n-3 FA supplementation during the late dry period (last 3 wk; close-up). All cows received the same diet without n-3 FA after calving for the first 6 wk of lactation. Ovaries of each cow were examined 10, 17, 24, and 34 d from calving (calving = d 0) by transrectal ultrasonography to determine follicular development. Blood samples were collected at 14-d intervals starting on the first day of the dry period (8 wk before expected calving) to determine plasma concentrations of glucose, β-hydroxybutyrate, nonesterified fatty acids, urea N, aspartate aminotransferase, and insulin. Blood samples were also collected on d 1, 10, 17, 24, 31, and 38 postpartum for determination of progesterone concentration. Milk yield was recorded daily throughout the experiment and samples were taken twice weekly (Monday and Thursday mornings) for analysis of fat, protein, and lactose. Yields of milk and 4% fat-corrected milk and milk composition were similar among treatments except for fat proportion, which tended to be lower in cows that were fed n-3 FA throughout the dry period. We observed no differences among treatments for plasma concentrations of metabolites and hormones. The cows that were fed in the 3 n-3 FA treatments had larger ovulatory follicles compared with those fed the controlled diet. Treatments did not differ significantly in terms of the number of days open, day to first service, or number of services per pregnancy. In conclusion, n-3 FA supplementation throughout the dry period or in the early or late prepartal period had no carryover reproductive postpartum benefits and no effect on the production of Holstein dairy cows.  相似文献   

19.
The effect of supplementation of increasing amounts of extruded linseed in diets based on hay (H; experiment 1) or corn silage (CS; experiment 2) was investigated in regard to dairy performance and the milk fatty acid (FA) composition. In each experiment, 4 lactating multiparous Holstein cows were used in a 4 × 4 Latin square design (28-d periods). The cows were fed a diet (50:50 and 40:60 concentrate:forage ratio for experiments 1 and 2, respectively; dry matter basis) without supplementation (H0 or CS0) or supplemented with 5% (H5 or CS5), 10% (H10 or CS10), or 15% (H15 or CS15) of extruded linseed. Regardless of the forage type, diet supplementation with increasing amounts of extruded linseed had no effect on the dry matter intake, milk yield, or protein content or yield. In contrast, the milk fat content decreased progressively from H0 to H10 diets, and then decreased strongly with the H15 diet in response to increasing amounts of extruded linseed. For CS diets, the milk fat content initially decreased from CS0 to CS10, but then increased with the CS15 diet. For the H diets, the milk saturated FA decreased (−24.1 g/100 g of FA) linearly with increasing amounts of extruded linseed, whereas the milk monounsaturated FA (+19.0 g/100 g), polyunsaturated FA (+4.9 g/100 g), and total trans FA (+14.7 g/100 g) increased linearly. For the CS diets, the extent of the changes in the milk FA composition was generally lower than for the H diets. Milk 12:0 to 16:0 decreased in a similar manner in the 2 experiments with increasing amounts of extruded linseed intake, whereas 18:0 and cis-9 18:1 increased. The response of total trans 18:1 was slightly higher for the CS than H diets. The milk trans-10 18:1 content increased more with the CS than the H diets. The milk cis-9,trans-11 conjugated linoleic acid response to increasing amounts of extruded linseed intake was linear and curvilinear for the H diets, whereas it was only linear for the CS diets. The milk 18:3n-3 percentage increased in a similar logarithmic manner in the 2 experiments. It was concluded that the milk FA composition can be altered by extruded linseed supplementation with increasing concentrations of potentially health-beneficial FA (i.e., oleic acid, 18:3n-3, cis-9,trans-11 conjugated linoleic acid, and odd- and branched-chain FA) and decreasing concentrations of saturated FA. Extruded linseed supplementation increased the milk trans FA percentage.  相似文献   

20.
We used 48 multiparous Holstein cows to compare the response of dairy cows to a direct-fed mixture of cellulase and xylanase enzymes (1.25 L of enzyme concentrate/tonne of forage dry matter) applied to the forage portion (60% corn silage and 40% alfalfa hay) of a total mixed diet starting either in the close-up dry period, at calving, or at peak milk production. Cows were blocked by calving date and, within blocks, randomly assigned to one of four treatment diets. Treatments were: 1) an untreated control diet, 2) enzyme addition to the forage from wk 6 to 18 postpartum, 3) enzyme addition to the forage from calving to wk 18 postpartum, and 4) enzyme addition to the forage from wk 4 prepartum to wk 18 postpartum. Total mixed diets were 65% forage and 35% concentrate prepartum, and 50:50 forage:concentrate postpartum. The production of milk, solids-corrected milk, fat-corrected milk, and energy-corrected milk was higher for cows fed enzyme-treated diets than for cows fed control diet. Production was similar for cows in all enzyme-treated groups, although numerically highest for cows that started receiving enzyme-treated forages right after parturition and numerically lowest when started prepartum. Concentrations of fat, protein, and lactose in milk were similar for all treatments; yields of protein and fat were higher for cows fed enzyme-treated forages. Dry matter intake and body condition scores, both prepartum and postpartum, were similar for all diets. Eating rates, as determined in two 24-h studies, were similar for control and enzyme-treated diets. The feeding of enzyme-treated forages increased milk production. While the effect of when the feeding of enzyme-treated forages started was not statistically significant, we recommend starting soon after parturition because of the greatest total milk production when starting at that time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号