首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The major advantage of using supercritical carbon dioxide (CO2) as a solvent in polymer processing is an enhancement in the free volume of a polymer due to dissolved CO2, which causes a considerable reduction in the viscosity. This allows spraying the polymer melt at low temperatures to produce micron size particles. We have used supercritical CO2 as a solvent for the generation of particles from poly(ethylene glycol) (PEG) of different molecular weights. Since PEG is a hydrophilic compound, it is a most commonly used polymer for encapsulating a drug. PEG particles with different properties may allow keeping a good control over the release of the drug. It has been possible to produce particles with different size, size distribution, porosity and shape by varying various process parameters such as molecular weight, temperature, pressure and nozzle diameter. A flow and a solidification model have been applied in order to have a theoretical insight into the role of different parameters.  相似文献   

2.
Poly(lactic acid) (PLA) particles were generated by rapid expansion of supercritical PLA/CO2 solutions (RESS). Two different PLA samples, one with high (PDI = 2.4) and the other one with low (PDI = 1.4) polydispersity but similar number average molecular weight, were compared. After micronization, the polymers were analysed by rapid-scan infrared spectroscopy, scanning electron microscopy, size-exclusion chromatography, differential scanning calorimetry, and NMR spectroscopy. Our investigation reveals that the polydispersity of the polymers strongly affects the size but not the shape of the particles. We found larger particles (∼730 nm) for the PLA with high polydispersity than for the PLA with low polydispersity (∼270 nm). In both cases, spherical particles were formed. Moreover, our results clearly show that PLA with high polydispersity is less suitable for RESS processing because the low-molecular weight chains are depleted over time and process conditions are thus not constant.  相似文献   

3.
Micronization of fenofibrate was investigated using rapid expansion of supercritical solution (RESS) process. Effects of pressure, temperature and nozzle on particle size were optimized using Taguchi's orthogonal array and analyzed using XRD, DSC, FT-IR, SEM, laser diffractometer and dissolution testing. Processed fenofibrate retained crystalline structure and has a similar chemical structure with unprocessed fenofibrate. The average particle size of fenofibrate was reduced from its original 68.779 ± 0.146 μm to 3.044 ± 0.056 μm under the optimum condition (T at 35 °C, P at 200 bar and nozzle diameter at 200 μm). The processed fenofibrate showed an enhanced dissolution rate by 8.13 times.  相似文献   

4.
An optical measurement technique, which is based on the Foerster resonant energy transfer (FRET) between two different dye molecules, has been applied successfully to observe volume expansion of a liquid solution, when it is pressurized with CO2. Rhodamine-B and Rhodamine-700 were dissolved in ethanol to form the FRET active dye solution. In a first “prove of principle” experiment, the sensitivity of the FRET efficiency towards volume expansion was demonstrated by pressurizing the liquid dye solution in a cuvette with CO2. From the rise of the meniscus of the solution inside the cuvette as a function of CO2 pressure, the simultaneously acquired FRET spectra could be correlated with the volume expansion of the dye solution. In a second experiment, the dye solution was injected into CO2 at different supercritical antisolvent operation pressures. FRET spectra were recorded 3 mm downstream of the injector nozzle, always upstream of the breakup of the injected liquid solution. At pressures below the thermodynamic mixture critical pressure (7.9 MPa @ 313 K) of the system ethanol/CO2 no liquid phase volume expansion was observed. At pressures between the thermodynamic and the dynamic mixture critical pressure (8.5 MPa @ 313 K) of the same system, volume expansion could be evidenced before the breakup of the injected liquid solution.  相似文献   

5.
Synthesis of PCL/clay masterbatches in supercritical carbon dioxide   总被引:1,自引:0,他引:1  
Pre-exfoliated nanoclays were prepared through a masterbatch process using supercritical carbon dioxide as solvent and poly(?-caprolactone) as organic matrix. In situ polymerization of ?-caprolactone in the presence of large amount of clay was conducted to obtain these easily dispersible nanoclays, collected as a dry and fine powder after reaction. Dispersion of these pre-exfoliated nanoclays in chlorinated polyethylene was also investigated. All the results confirm the specific advantages of supercritical CO2 towards conventional solvents for filler modification.  相似文献   

6.
Supercritical processes for drug delivery system design have attracted considerable attention recently. This present work investigates the application of a supercritical antisolvent coating process for controlled drug release design. Hydrocortisone as the host drug particles and poly(lactide-co-glycolide) (PLGA) as the polymer carrier were selected as the model system for this purpose. In this research the drug particles were suspended in a polymer solution of dichloromethane. The suspension was then sprayed into supercritical CO2 as an antisolvent. A parallel study of co-precipitation of the drug and polymer using the same supercritical antisolvent process at the same operating conditions was performed for comparison with the coating process. SEM images were used to characterize the drug particles before and after and the assay analysis was carried out using HPLC. The coated particles and co-precipitated particles were evaluated in terms of encapsulation efficiency and drug release profiles. The major advantage of this new approach is the ability to physically coat very fine (< 30 μm) particles without having to dissolve them in an organic solvent. It was found that higher polymer to drug ratios produced higher encapsulation efficiencies and the coated drug particles did show sustained release behavior. The co-precipitation of the drug and polymer (at the same operating conditions), however, did not exhibit any sustained release.  相似文献   

7.
A simple static technique was used to obtain the solubility of cetirizine in supercritical carbon dioxide. The solubility measurements were performed at temperatures and pressures ranging from 308.15 to 338.15 K and 160 to 400 bar, respectively; resulting in mole fractions in the 1.05 × 10−5 to 4.92 × 10−3 range. The Chrastil, Bartle, Kumar & Johnston and the Mendez-Santiago and Teja (MST) models were used to correlate the experimental data. The calculated solubilities showed good agreement with the experimental data in the temperature and pressure ranges studied.  相似文献   

8.
Donghai Sun  Ying Huang 《Polymer》2004,45(11):3805-3810
Monomer mixture of styrene (St) and N-cyclohexylmaleimide (ChMI) and initiator benzoyl peroxide (BPO) were first impregnated into isotactic polypropylene (iPP) films simultaneously using supercritical carbon dioxide (SC CO2) as a solvent and swelling agent at 35.0 °C. The composites were obtained after the monomers were grafted onto the iPP matrix at 70 °C. The effects of various conditions, such as pressure, monomer concentration, and the molar ratio of the two monomers in the soaking process, on the composition of the composites were determined. The molar ratios of St to ChMI in the composites were estimated by Fourier transform infrared spectroscopy. The thermal properties, the morphology, and the mechanical properties of the composites were characterized by different techniques. The results demonstrated that the phase size of the grafted St-ChMI was very small and the phase boundary was very ambiguous. The composites had better thermal stability than the original iPP film. The Young's modulus and tensile strength of the film increased continuously with increasing grafting percentage. The two grafted monomers in the composites had good synergetic effect.  相似文献   

9.
用超临界CO2快速膨胀法制备了SiO2/聚氨酯超疏水涂层。首先用十三氟辛基三乙氧基硅烷(F-硅烷)和γ-(甲基丙烯酰氧基)丙基三甲氧基硅烷(KH-570)改性纳米二氧化硅,制备出含双键的纳米二氧化硅粒子,将其分散在超临界CO2中,再利用超临界CO2快速膨胀法将其喷射到双键封端的且已添加了引发剂的聚氨酯涂层表面,通过加热,使纳米二氧化硅粒子接枝在聚氨酯涂层表面,形成稳固粗糙结构,获得了超疏水性质。研究了喷嘴温度、反应釜温度和压力、偶联剂配比、表面粗糙度对涂层疏水性的影响。结果表明:涂层的静态水接触角可达到169.1°±0.6°;在喷嘴和釜内温度都为90℃,釜内压力为16 MPa,F-硅烷和KH-570配比为1∶1,表面粗糙度为7.3 μm时,所制得涂层具有较好的超疏水性,且具有优良的耐刮伤性。该法高效环保,涂层性能优良,适于大面积制备。  相似文献   

10.
The supercritical antisolvent technology is used to crystallize paracetamol particles. Supercritical carbon dioxide (scCO2) is used as antisolvent. Ethanol, acetone and mixtures of ethanol and acetone are used as solvents. The initial concentration of paracetamol in the solution was varied between 1 and 5 wt%, the composition of the ethanol/acetone solvent mixture between 50 and 90 wt% of ethanol and the operation pressure between 10 and 16 MPa at a temperature of 313 K. The most important finding is that the polymorph of paracetamol crystals can be adjusted between monoclinic and orthorhombic by varying the content of ethanol in the solution. The second important finding is that the occurrence of primary and secondary crystal structures can be explained solely by the overall supersaturation during the crystallization process. While X-ray diffraction was used to analyze the polymorph of the particles, their morphology was analyzed using scanning electron microscopy.  相似文献   

11.
12.
The present study aims to isolate the lipids from microalgae by supercritical CO2 (SC-CO2) extraction followed by a further enrichment of crude lipids to produce high-purity docosahexenoic acid (DHA) by an urea complexation method. Our systematic approach indicates the optimum conditions of supercritical CO2 extraction were obtained as follows: 35 MPa, 40 °C, ethanol (95%, v/v) as the co-solvent, and the mass ratio of material to co-solvent 1:1. Under these conditions, 33.9% of lipid yield and 27.5% of DHA content were achieved. Despite the relatively low lipid yield, supercritical CO2 extraction has exhibited many advantages over the Soxhlet extraction for the DHA enrichment such as high DHA purity and superb product quality. Furthermore, urea complexation method on DHA enrichment considerably increased the DHA purity from 29.7% to 60.4% with an enrichment ratio of 60.6%, under the optimum complexation conditions of urea/fatty acid 2:1, complexation time 8 h, and the complexation temperature of −10 °C.  相似文献   

13.
The performance of pharmaceuticals in biological systems can be enhanced by reducing the particle size of pharmaceuticals. Rapid expansion from supercritical solution (RESS) has provided a promising alternative to comminute contaminant-free particles of heat-sensitive materials such as drugs. In this work, aspirin has been successfully precipitated by the RESS technology. The performances of the RESS process under different operating conditions are evaluated through the analysis of the particle characteristics. Our results show that extraction pressure and extraction temperature can significantly affect the morphology and size of the precipitated particles whereas the nozzle diameter and pre-expansion temperature are not observed to apparently influence the RESS particles. The RESS process could produce ultrafine spherical particles (0.1-0.3 μm) of aspirin as reflected by SEM observations.  相似文献   

14.
In situ measurements of the ionic conductivity were performed on polyethers, poly(ethylene oxide) (PEO) and poly(oligo oxyethylene methacrylate) (PMEO), with lithium triflate (LiCF3SO3) as crystalline and amorphous electrolytes, and at CO2 pressures up to 20 MPa. Both PEO and PMEO systems in subcritical and supercritical CO2 increased more than five fold in ionic conductivity at 40 °C composed to atmospheric pressure. The pressure dependence of the ionic conductivity for PEO electrolytes was positive under CO2, and increased by two orders of magnitude under pressurization from 0 to 20 MPa, whereas it decreases with increasing pressure of N2. The enhancement is caused by the plasticizing effect of CO2 molecules that penetrate into the electrolytes.  相似文献   

15.
The corrosion behavior of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2 was investigated using weight-loss measurements. As a comparison, the instantaneous corrosion rate in the early stages for iron in the same corrosion environment was measured by resistance relaxation method. Surface analyzes using SEM/EDS, XRD and XPS were applied to study the morphology and chemical composition of the corroded sample surface. Weight-loss method results showed that the corrosion rate of X70 steel samples increased with SO2 concentration, while the corrosion rate increased before decreasing with SO2 concentration for iron sample. Comparing resistance relaxation method results with weight-loss method results, it is found that the instantaneous corrosion rate of iron is much higher than the uniform corrosion rate of the iron tablet specimens which are covered with thick corrosion product films after a long period of corrosion. The corrosion product films were mainly composed of FeSO4 and FeSO3 hydrates. The possible reaction mechanism under such environment was also analyzed, and the electrochemical reaction between the dissolved SO2 in the condensed water film with iron is the critical reaction step.  相似文献   

16.
Rosehip seeds were milled, sieved, and extracted with 26.3 g/g substrate/h of supercritical carbon dioxide (CO2) at 40°C and 300 bar. The extraction kinetics were characterized by an initial solubility-controlled period (8.78 g oil/kg CO2 at 40°C and 300 bar), followed by a transition period to a final mass transfer-controlled process. The integral yield of oil approached an asymptotic value that was dependent on the particle size of the substrate: 57.1 g oil/kg dry oil-free substrate (large particles), 171.0 g/kg (medium-size particles), or 391.5 g/kg (small particles). Based on gravimetric determinations and microscopic analysis, our size-classification process segregated seed parts having different oil contents. Particles ≥0.85 mm were mainly composed of tough, lignified testa fragments devoid of oil, whereas particles ≤0.425 mm contained mostly brittle, oil-rich germ fragments. The segregation of seed in fractions with different oil contents may be a common occurrence in supercritical extraction experiments, especially for seeds with thick and/or hard testa and small germ, whose fractions can be separated by sieving.  相似文献   

17.
Polymeric catalytic membrane reactors offer a larger flexibility over conventional reactors. The most-used method to generate polymer-based catalytic membranes is the phase inversion that, however, presents some limitations; in particular, the difficulty in generating a uniform distribution of the loaded materials.In this work, we use two new processes for the formation of membranes loaded with catalyst for potential applications in catalysis: supercritical assisted phase inversion and supercritical assisted gel drying, applied to formation of poly(vinylidene fluoride-co-hexafluoropropylene) membranes loaded with palladium nanoparticles. We analyzed the effect of process parameters (polymer concentration, catalyst concentration, pressure, temperature) on the membranes morphology. The supercritical phase inversion process produced cellular asymmetric structures with cell size ranging between 3 and 6 μm and nanoporous homogeneous networks, depending on the process conditions. Palladium nanoparticles homogeneous distributions were obtained only operating at selected process conditions, i.e., pressures larger than 150 bar and temperatures lower than 45 °C.Supercritical gel drying allowed homogeneous nanoporous membranes formation at all the tested process conditions: they were characterized by very high porosity (higher than 90%) and a very uniform catalyst distribution.  相似文献   

18.
Porous TiO2 nanocrystals (PTN) were synthesized using activated carbon templates with supercritical CO2 by using the nanoscale permeation (NP) process. The photoactivity of PTN was tested by methylene blue (MB) degradation. Compared with the commercially available P-25, all PTN exhibited significant photocatalytic degradation of MB mainly due to their porous structure with high surface area, high hydroxy concentration and small crystalline size. The optimum temperature and pressure are found to be 60 °C and 26 MPa, under which obtained PTN-1 shows the highest photoactivity and slow deactivation for MB degradation after 15 trials.  相似文献   

19.
In this paper, we numerically study particle formation in the rapid expansion of supercritical solution (RESS) process in a two dimensional, axisymmetric geometry, for a benzoic acid + CO2 system. The fluid is described by the classical Navier–Stokes equation, with the thermodynamic pressure being replaced by a generalized pressure tensor. Homogenous particle nucleation, transport, condensation and coagulation are described by a general dynamic equation, which is solved using the method of moments. The results show that the maximal nucleation rate and number density occurs near the nozzle exit, and particle precipitation inside the nozzle might not be ignored. Particles grow mainly across the shocks. Fluid in the shear layer of the jet shows a relatively low temperature, high nucleation rate, and carries particles with small sizes. On the plate, particles within the jet have smaller average size and higher geometric mean, while particles outside the jet shows a larger average size and a lower geometric mean. Increasing the preexpansion temperature will increase both the average particle size and standard deviation. The preexpansion pressure does not show a monotonic dependency with the average particle size. Increasing the distance between the plate and the nozzle exit might decrease the particle size. For all the cases in this paper, the average particle size on the plate is on the order of tens of nanometers.  相似文献   

20.
Polypropylene fibers were dyed in supercritical carbon dioxide system and the results were compared with those of fiber dyed in water system. Dye uptake value calculated by a UV spectrum indicated that polypropylene fiber dyeing was much better in carbon dioxide than in water. Optical microscopical analysis showed that dye molecules had diffused thoroughly into fiber in CO2 because of the excellent compatibility between the dye and the CO2. X-ray and birefrigence analysis demonstrated that plastification caused by the implementation of CO2 made molecular chain more mobile and led to an increase in the dyeing of polypropylene fibers. Moreover a mechanical test and DSC analysis indicated that the fiber structure was not damaged when the fabric was dyed at 100 °C. Hence dyeing polypropylene using CO2 as a transport medium was very feasible and worthy of further development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号