共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of dairy science》2022,105(7):5610-5621
The objective of this study was to develop formulas based on milk composition of individual goat samples for predicting cheese yield (%CY) traits (fresh curd, milk solids, and water retained in the curd). The specific aims were to assess and quantify (1) the contribution of major milk components (fat, protein, and casein) and udder health indicators (lactose, somatic cell count, pH, and bacterial count) on %CY traits (fresh curd, milk solids, and water retained in the curd); (2) the cheese-making method; and (3) goat breed effects on prediction accuracy of the %CY formulas. The %CY traits were analyzed in duplicate from 600 goats, using an individual laboratory cheese-making procedure (9-MilCA method; 9 mL of milk per observation) for a total of 1,200 observations. Goats were reared in 36 herds and belonged to 6 breeds (Saanen, Murciano-Granadina, Camosciata delle Alpi, Maltese, Sarda, and Sarda Primitiva). Fresh %CY (%CYCURD), total solids (%CYSOLIDS), and water retained (%CYWATER) in the curd were used as response variables. Single and multiple linear regression models were tested via different combinations of standard milk components (fat, protein, casein) and indirect udder health indicators (UHI; lactose, somatic cell count, pH, and bacterial count). The 2 %CY observations within animal were averaged, and a cross-validation (CrV) scheme was adopted, in which 80% of observations were randomly assigned to the calibration (CAL) set and 20% to the validation (VAL) set. The procedure was repeated 10 times to account for sampling variability. Further, the model presenting the best prediction accuracy in CrV (i.e., comprehensive formula) was used in a secondary analysis to assess the accuracy of the %CY predictive formulas as part of the laboratory cheese-making procedure (within-animal validation, WAV), in which the first %CY observation within animal was assigned to CAL, and the second to the VAL set. Finally, a stratified CrV (SCrV) was adopted to assess the %CY traits prediction accuracy across goat breeds, again using the best model, in which 5 breeds were included in CAL and the remaining one in the VAL set. Fitting statistics of the formulas were assessed by coefficient of determination of validation (R2VAL) and the root mean square error of validation (RMSEVAL). In CrV, the formula with the best prediction accuracy for all %CY traits included fat, casein, and UHI (R2VAL = 0.65, 0.96, and 0.23 for %CYCURD, %CYSOLIDS, and %CYWATER, respectively). The WAV procedure showed R2VAL higher than those obtained in CrV, evidencing a low effect of the 9-MilCA method and, indirectly, its high repeatability. In the SCrV, large differences for %CYCURD and %CYWATER among breeds evidenced that the breed is a fundamental factor to consider in %CY predictive formulas. These results may be useful to monitor milk composition and quantify the influence of milk traits in the composite selection indices of specific breeds, and for the direct genetic improvement of cheese production. 相似文献
2.
不同因素对羊奶干酪出品率的影响 总被引:9,自引:0,他引:9
对影响羊奶干酪出品率主要因素进行了研究。结果表明,原料乳浓度越大,羊奶干酪出品率越高;杀菌条件以巴氏杀菌或高温短时杀菌效果较好;CaCl2添加量以0.02%~0.03%为宜;用犊牛皱胃酶或羔羊皱胃酶为凝乳酶,羊奶干酪的出品率最高。 相似文献
3.
Govindasamy-Lucey S Jaeggi JJ Martinelli C Johnson ME Lucey JA 《Journal of dairy science》2011,94(6):2719-2730
Fortification of cheesemilk with membrane retentates is often practiced by cheesemakers to increase yield. However, the higher casein (CN) content can alter coagulation characteristics, which may affect cheese yield and quality. The objective of this study was to evaluate the effect of using ultrafiltration (UF) retentates that were processed at low temperatures on the properties of Swiss cheese. Because of the faster clotting observed with fortified milks, we also investigated the effects of altering the coagulation conditions by reducing the renneting temperature (from 32.2 to 28.3°C) and allowing a longer renneting time before cutting (i.e., giving an extra 5 min). Milks with elevated total solids (TS; ∼13.4%) were made by blending whole milk retentates (26.5% TS, 7.7% CN, 11.5% fat) obtained by cold (<7°C) UF with part skim milk (11.4% TS, 2.5% CN, 2.6% fat) to obtain milk with CN:fat ratio of approximately 0.87. Control cheeses were made from part-skim milk (11.5% TS, 2.5% CN, 2.8% fat). Three types of UF fortified cheeses were manufactured by altering the renneting temperature and renneting time: high renneting temperature = 32.2°C (UFHT), low renneting temperature = 28.3°C (UFLT), and a low renneting temperature (28.3°C) plus longer cutting time (+5 min compared to UFLT; UFLTL). Cutting times, as selected by a Wisconsin licensed cheesemaker, were approximately 21, 31, 35, and 32 min for UFHT, UFLT, UFLTL, and control milks, respectively. Storage moduli of gels at cutting were lower for the UFHT and UFLT samples compared with UFLTL or control. Yield stress values of gels from the UF-fortified milks were higher than those of control milks, and decreasing the renneting temperature reduced the yield stress values. Increasing the cutting time for the gels made from the UF-fortified milks resulted in an increase in yield stress values. Yield strain values were significantly lower in gels made from control or UFLTL milks compared with gels made from UFHT or UFLT milks. Cheese composition did not differ except for fat content, which was lower in the control compared with the UF-fortified cheeses. No residual lactose or galactose remained in the cheeses after 2 mo of ripening. Fat recoveries were similar in control, UFHT, and UFLTL but lower in UFLT cheeses. Significantly higher N recoveries were obtained in the UF-fortified cheeses compared with control cheese. Because of higher fat and CN contents, cheese yield was significantly higher in UF-fortified cheeses (∼11.0 to 11.2%) compared with control cheese (∼8.5%). A significant reduction was observed in volume of whey produced from cheese made from UF-fortified milk and in these wheys, the protein was a higher proportion of the solids. During ripening, the pH values and 12% trichloroacetic acid-soluble N levels were similar for all cheeses. No differences were observed in the sensory properties of the cheeses. The use of UF retentates improved cheese yield with no significant effect on ripening or sensory quality. The faster coagulation and gel firming can be decreased by altering the renneting conditions. 相似文献
4.
Ane Aldalur María Ángeles Bustamante Jesús Salmerón Luis Javier R. Barron 《Journal of dairy science》2021,104(1):253-269
Very diverse cutting and cooking intensity processes are currently used in small artisan dairies to manufacture Idiazabal cheese. The combination of the technical settings used during cheese manufacturing is known to affect cheese composition and yield, as well as whey losses. However, the information regarding the effect on microstructure and texture of cheese is scarce, especially in commercial productions. Therefore, the effect of moderate- and high-intensity cutting and cooking processes on whey losses, curd-grain characteristics, microstructure and cheese properties, and yield were analyzed. Three trials were monitored in each of 2 different small dairies during the cheesemaking of Idiazabal cheese, which is a semihard cheese made from raw sheep milk. The role and know-how of the cheesemakers are crucial in these productions because they determine the cutting point and handle semi-automatic vats. The 2 dairies studied used the following settings: dairy A used moderate-intensity cutting and cooking conditions, and dairy B used high-intensity cutting and cooking settings. Multiple relationships between cheese-processing conditions and curd, whey, and cheese properties as well as yield were obtained from a partial least square regression analysis. An increased amount of fat and casein losses were generated due to a combination of an excessively firm gel at cutting point together with high-intensity cutting and cooking processes. The microstructural analysis revealed that the porosity of the protein matrix of curd grains after cooking and cheese after pressing was the main feature affected, developing a less porous structure with a more intense process. Moderate-intensity cutting and cooking processes were associated with a higher cheese yield, regardless of the longer pressing process applied. No significant differences were observed in cheese composition. After 1 mo of ripening, however, the cheese was more brittle and adhesive when the high-intensity cutting and cooking process was applied. This could be associated with the composition, characteristics, and size distribution of curd grains due to differences in the compaction degree during pressing. These results could help to modify specific conditions used in cheesemaking, especially improving the process in those small dairies where the role of the cheesemaker is crucial. 相似文献
5.
Lourdes Santiago-López Jose E. Aguilar-Toalá Adrián Hernández-Mendoza Belinda Vallejo-Cordoba Andrea M. Liceaga Aarón F. González-Córdova 《Journal of dairy science》2018,101(5):3742-3757
Traditionally, cheese is manufactured by converting fluid milk to a semisolid mass through the use of a coagulating agent, such as rennet, acid, heat plus acid, or a combination thereof. Cheese can vary widely in its characteristics, including color, aroma, texture, flavor, and firmness, which can generally be attributed to the production technology, source of the milk, moisture content, and length of aging, in addition to the presence of specific molds, yeast, and bacteria. Among the most important bacteria, lactic acid bacteria (LAB) play a critical role during the cheese-making process. In general, LAB contain cell-envelope proteinases that contribute to the proteolysis of cheese proteins, breaking them down into oligopeptides that can be subsequently taken up by cells via specific peptide transport systems or further degraded into shorter peptides and amino acids through the collaborative action of various intracellular peptidases. Such peptides, amino acids, and their derivatives contribute to the development of texture and flavor in the final cheese. In vitro and in vivo assays have demonstrated that specific sequences of released peptides exhibit biological properties including antioxidant, antimicrobial, anti-inflammatory, immunomodulatory, and analgesic/opioid activity, in addition to angiotensin-converting enzyme inhibition and antiproliferative activity. Some LAB also produce functional lipids (e.g., conjugated linoleic acid) with anti-inflammatory and anticarcinogenic activity, synthesize vitamins and antimicrobial peptides (bacteriocins), or release γ-aminobutyric acid, a nonprotein amino acid that participates in physiological functions, such as neurotransmission and hypotension induction, with diuretic effects. This review provides an overview of the main bioactive components present or released during the ripening process of different types of cheese. 相似文献
6.
7.
A hard-pressed, brined cheese was produced from frozen ovine milk collected in February, May, and August. Solids in the milk decreased as the season progressed. This was a result of high solids in early-lactation milk and low solids in August milk because of hot weather and poorer quality pastures. Casein as a percentage of true protein and the casein to fat ratio were higher in May and August milk. Fat in the cheese from February milk was higher and total protein was lower than in May and August. Milk, whey, and press whey composition were influenced by season and followed the trends of milk composition. Fat recovery in the cheeses ranged from 83.2 to 84.2%. Protein recovery in the cheeses was not affected by season. Cheese yield from February milk was higher than from May and August milk and was a result of higher casein and fat in the milk. 相似文献
8.
Preacidification of milk for cheese making may have a beneficial impact on increasing proteolysis during cheese aging. Unlike other acids, CO(2) can easily be removed from whey. The objectives of this work were to determine the effect of milk preacidification on Cheddar cheese composition, the recovery of individual milk components, and yield. Carbon dioxide was injected inline after the cooling section of the pasteurizer. Cheeses with and without added CO(2) were made simultaneously from the same batch of milk. This procedure was replicated 3 times. Carbon dioxide in the cheese milk was about 1600 ppm, which resulted in a milk pH of about 5.9 at 31 degrees C. The starter culture and coagulant addition rates were the same for both the CO(2) treatment and the control. The whey pH at draining of the CO(2) treatment was lower than the control. Total make time was shorter for the CO(2) treatment compared with the control. Cheese manufactured from milk acidified with CO(2) retained less of the total calcium and fat than the control cheese. The higher fat loss was primarily in the whey at draining. Preacidification with CO(2) did not alter the crude protein recovery in the cheese. The CO(2) treatment resulted in a higher added salt recovery in the cheese and produced a cheese that contained too much salt. Considering the higher added salt retention, the salt application rate could be lowered to achieve a typical cheese salt content. Cheese yield efficiency of the CO(2) treated milk was 4.4% lower than the control due to fat loss. Future work will focus on modifying the make procedure to achieve a normal fat loss into the whey when CO(2) is added to milk. 相似文献
9.
Invited review: perspectives on the basis of the rheology and texture properties of cheese 总被引:6,自引:0,他引:6
Physical and chemical properties of cheese, such as texture, color, melt, and stretch, are primarily determined by the interaction of casein (CN) molecules. This review will discuss CN chemistry, how it is influenced by the cheese-making process, and how it impinges on the final product, cheese. We attempt to demonstrate that the application of principles governing the molecular interactions of CN can be useful in understanding the many physical and chemical properties of cheese and, in turn, how this can be used by the cheesemaker to produce the desired cheese. The physical properties of cheese (as well as flavor) are influenced by a number of factors including: milk composition; milk quality; temperature; the rate and extent of acidification by the starter bacteria; the pH history of cheese; the concentration of Ca salts (proportions of soluble and insoluble forms); extent and type of proteolysis, and other ripening reactions. Our hypothesis is that these factors also control and modify the nature and strength of CN interactions. The approach behind the recently proposed dual-binding model for the structure and stability of CN micelles is used as a framework to understand the physical and chemical properties of cheese. 相似文献
10.
Melilli C Lynch JM Carpino S Barbano DM Licitra G Cappa A 《Journal of dairy science》2002,85(10):2699-2704
Theoretical cheese yield can be estimated from the milk fat and casein or protein content of milk using classical formulae, such as the VanSlyke formula. These equations are reliable predictors of theoretical or actual yield based on accurately measured milk fat and casein content. Many cheese makers desire to base payment for milk to dairy farmers on the yield of cheese. In small factories, however, accurate measurement of fat and casein content of milk by either chemical methods or infrared milk analysis is too time consuming and expensive. Therefore, an empirical test to predict cheese yield was developed which uses simple equipment (i.e., clinical centrifuge, analytical balance, and forced air oven) to carry out a miniature cheese making, followed by a gravimetric measurement of dry weight yield. A linear regression of calculated theoretical versus dry weight yields for milks of known fat and casein content was calculated. A regression equation of y = 1.275x + 1.528, where y is theoretical yield and x is measured dry solids yield (r2 = 0.981), for Cheddar cheese was developed using milks with a range of theoretical yield from 7 to 11.8%. The standard deviation of the difference (SDD) between theoretical cheese yield and dry solids yield was 0.194 and the coefficient of variation (SDD/mean x 100) was 1.95% upon cross validation. For cheeses without a well-established theoretical cheese yield equation, the measured dry weight yields could be directly correlated to the observed yields in the factory; this would more accurately reflect the expected yield performance. Payments for milk based on these measurements would more accurately reflect quality and composition of the milk and the actual average recovery of fat and casein achieved under practical cheese making conditions. 相似文献
11.
Mohammad B. Habibi‐Najafi Byong H. Lee Dr. Barry Law 《Critical reviews in food science and nutrition》1996,36(5):397-411
Bitterness, the necessary consequence of proteolysis, has been under investigation from different perspectives. This review attempts to give more up‐to‐date information on the definition of some principal aspects, the relationship between the proteolytic activity and bitter peptide accumulation in cheese, and methods of isolation and detection of bitter peptides. Further knowledge on the physicochemical properties of bitter peptides in cheese as well as in synthetic peptides and the possible control methods for bitterness are discussed.
Particular interest in using some strains of lactobacilli or their enzymes as an adjunct in accelerated ripened cheese (ARC) and enzyme‐modified cheese (EMC) without bitterness is also described in detail. 相似文献
12.
The protein matrix of cheese undergoes changes immediately following cheesemaking in response to salting and cooling. Normally, such changes are limited by the amount of water entrapped in the cheese at the time of block formation but for brined cheeses such as feta cheese brine acts as a reservoir of additional water. Our objective was to determine the extent to which the protein matrix of cheese expands or contracts as a function of salt concentration and temperature, and whether such changes are reversible. Blocks of feta cheese made with overnight fermentation at 20 and 31°C yielded cheese of pH 4.92 and pH 4.83 with 50.8 and 48.9 g/100 g of moisture, respectively. These cheeses were then cut into 100-g pieces and placed in plastic bags containing 100 g of whey brine solutions of 6.5, 8.0, and 9.5% salt, and stored at 3, 6, 10, and 22°C for 10 d. After brining, cheese and whey were reweighed, whey volume measured, and cheese salt, moisture, and pH determined. A second set of cheeses were similarly placed in brine (n = 9) and stored for 10 d at 3°C, followed by 10 d at 22°C, followed by 10 d at 3°C, or the complementary treatments starting at 22°C. Cheese weight and whey volume (n = 3) were measured at 10, 20, and 30 d of brining. Cheese structure was examined using laser scanning confocal microscopy. Brining temperature had the greatest influence on cheese composition (except for salt content), cheese weight, and cheese volume. Salt-in-moisture content of the cheeses approached expected levels based on brine concentration and ratio of brine to cheese (i.e., 4.6, 5.7 and 6.7%). Brining at 3°C increased cheese moisture, especially for cheese with an initial pH of 4.92, producing cheese with moisture up to 58 g/100 g. Cheese weight increased after brining at 3, 6, or 10°C. Cold storage also prevented further fermentation and the pH remained constant, whereas at 22°C the pH dropped as low as pH 4.1. At 3°C, the cheese matrix expanded (20 to 30%), whereas at 22°C there was a contraction and a 13 to 18 g/100 g loss in weight. Expansion of the protein matrix at 3°C was reversed by changing to 22°C. However, contraction of the protein matrix was not reversed by changing to 3°C, and the cheese volume remained less than what it was initially. 相似文献
13.
Govindasamy-Lucey S Lin T Jaeggi JJ Martinelli CJ Johnson ME Lucey JA 《Journal of dairy science》2007,90(6):2675-2688
Sweet cream buttermilk (SCB) is a rich source of phospholipids (PL). Most SCB is sold in a concentrated form. This study was conducted to determine if different concentration processes could affect the behavior of SCB as an ingredient in cheese. Sweet cream buttermilk was concentrated by 3 methods: cold ( < 7°C) UF, cold reverse osmosis (RO), and evaporation (EVAP). A washed, stirred-curd pizza cheese was manufactured using the 3 different types of concentrated SCB as an ingredient in standardized milk. Cheesemilks of casein:fat ratio of 1.0 and final casein content ∼2.7% were obtained by blending ultrafiltered (UF)-SCB retentate (19.9% solids), RO-SCB retentate (21.9% solids), or EVAP-SCB retentate (36.6% solids) with partially skimmed milk (11.2% solids) and cream (34.6% fat). Control milk (11.0% solids) was standardized by blending partially skimmed milk with cream. Cheese functionality was assessed using dynamic low-amplitude oscillatory rheology, UW Meltprofiler (degree of flow after heating to 60°C), and performance of cheese on pizza. Initial trials with SCB-fortified cheeses resulted in ∼4 to 5% higher moisture (51 to 52%) than control cheese (∼47%). In subsequent trials, procedures were altered to obtain similar moisture content in all cheeses. Fat recoveries were significantly lower in RO- and EVAP-SCB cheeses than in control or UF-SCB cheeses. Nitrogen recoveries were not significantly different but tended to be slightly lower in control cheeses than the various SCB cheeses. Total PL recovered in SCB cheeses (∼32 to 36%) were lower than control (∼41%), even though SCB is high in PL. From the rheology test, the loss tangent curves at temperatures > 40°C increased as cheese aged up to a month and were significantly lower in SCB cheeses than the control, indicating lower meltability. Degree of flow in all the cheeses was similar regardless of the treatment used, and as cheese ripened, it increased for all cheeses. Trichloroacetic acid-soluble N levels were similar in the control and SCB-fortified cheese. On baked pizza, cheese made from milk fortified with UF-SCB tended to have the lowest amount of free oil, but flavor attributes of all cheeses were similar. Addition of concentrated SCB to standardize cheesemilk for pizza cheese did not adversely affect functional properties of cheese but increased cheese moisture without changes in manufacturing procedure. 相似文献
14.
The effect of microfiltration (MF) on the composition of Cheddar cheese, fat, crude protein (CP), calcium, total solids recovery, and Cheddar cheese yield efficiency (i.e., composition adjusted yield divided by theoretical yield) was determined. Raw skim milk was microfiltered twofold using a 0.1-microm ceramic membrane at 50 degrees C. Four vats of cheese were made in one day using milk at lx, 1.26x, 1.51x, and 1.82x concentration factor (CF). An appropriate amount of cream was added to achieve a constant casein (CN)-to-fat ratio across treatments. Cheese manufacture was repeated on four different days using a randomized complete block design. The composition of the cheese was affected by MF. Moisture content of the cheese decreased with increasing MF CF. Standardization of milk to a constant CN-to-fat ratio did not eliminate the effect of MF on cheese moisture content. Fat recovery in cheese was not changed by MF. Separation of cream prior to MF, followed by the recombination of skim or MF retentate with cream resulted in lower fat recovery in cheese for control and all treatments and higher fat loss in whey when compared to previous yield experiments, when control Cheddar cheese was made from unseparated milk. Crude protein, calcium, and total solids recovery in cheese increased with increasing MF CF, due to partial removal of these components prior to cheese making. Calcium and calcium as a percentage of protein increased in the cheese, suggesting an increase in calcium retention in the cheese with increasing CF. While the actual and composition adjusted cheese yields increased with increasing MF CF, as expected, there was no effect of MF CF on cheese yield efficiency. 相似文献
15.
Over a 14-month period, bulk tank milk was collected twice a week and was adjusted with cream and skim milk powder to provide six levels each of fat and protein varying from 3·0 to 4·0%. Milk samples were analyzed for total solids, fat, protein, casein, lactose and somatic cell count and were used for laboratory-scale cheesemaking. Data obtained from the milk input and the cheese output were used to determine actual, moisture adjusted, theoretical yield, and efficiency of yield. Least squares analyses of data indicated that higher cheese yields were obtained from higher fat and protein contents in milk. Higher yield efficiency was associated with higher ratios of protein to fat and casein to fat. Regression analysis indicated that a percentage increase in fat content in milk resulted in an increase of 1·23–1·37% in moisture adjusted yield in the different protein levels. For a similar increase of protein in milk, there were 1·80–2·04% increase in moisture adjusted yields in different fat levels. 相似文献
16.
This review paper provides a deep understanding of stringiness property in a cheese product. Stringiness is used to describe the extended continuous strand of a molten cheese, especially mozzarella cheese. Stringiness is often described quantitatively by stretch length, as well as qualitative definition which focuses on the dimension of strand and ease of extensibility. Very often, the scope of defining stringiness attributes is limited by the measuring techniques because a complete experimental setup is required to obtain information on both stretch quantity and stretch quality. Among the measuring methods, cheese extensibility rig stands out to be the best method to assess stringiness attribute of a cheese as it is an objective method. In addition, a detailed study on the molecular behavior and interactions among natural and imitation cheese components in delivering stringiness, and the challenges faced therein have been reviewed. Thus, the review provides a foundation for the development of vegan cheese or plant-based cheese with stringiness properties. 相似文献
17.
Caro I Soto S Franco MJ Meza-Nieto M Alfaro-Rodríguez RH Mateo J 《Journal of dairy science》2011,94(2):580-588
The effect of adding either skim milk or a commercial dry milk protein concentrate (MPC) to whole milk on the composition, yield, and functional properties of Mexican Oaxaca cheese were investigated. Five batches of Oaxaca cheeses were produced. One batch (the control) was produced from whole milk containing 3.5% fat and 9% nonfat solids (SNF). Two batches were produced from milk standardized with skim milk to 2.7 and 1.8% fat, maintaining the SNF content at 9%. In the other 2 batches, an MPC (40% protein content) was used to standardize the milk to a SNF content of 10 and 11%, maintaining the milk fat content at 3.5%. The use of either skim milk or MPC caused a significant decrease in the fat percentage in cheese. The use of skim milk or MPC showed a nonsignificant tendency to lower total solids and fat recoveries in cheese. Actual, dry matter, and moisture-adjusted cheese yields significantly decreased with skim milk addition, but increased with MPC addition. However, normalized yields adjusted to milk fat and protein reference levels did not show significant differences between treatments. Considering skim milk-added and control cheeses, actual yield increased with cheese milk fat content at a rate of 1.34 kg/kg of fat (R = 0.88). In addition, cheese milk fat and SNF:fat ratio proved to be strong individual predictors of cheese moisture-adjusted yield (r2 ≈ 0.90). Taking into account the results obtained from control and MPC-added cheeses, a 2.0-kg cheese yield increase rate per kg of milk MPC protein was observed (R = 0.89), with TS and SNF being the strongest predictors for moisture adjusted yield (r2 ≈ 0.77). Reduced-fat Oaxaca cheese functionality differed from that of controls. In unmelted reduced-fat cheeses, hardness and springiness increased. In melted reduced-fat cheeses, meltability and free oil increased, but stretchability decreased. These changes were related to differences in cheese composition, mainly fat in dry matter and calcium in SNF. 相似文献
18.
用8种不同品种大豆制作的豆乳与牛奶混合,按照切达干酪生产工艺制作双蛋白切达干酪,以同批次纯牛奶制作的干酪为对照组,对产品的得率、色泽、质构和感官特性等指标进行了分析和比较。实验结果表明,各组双蛋白干酪均比纯牛奶干酪的得率高,各组双蛋白干酪之间得率存在较大差异。质构测定结果表明,不同大豆品种生产的双蛋白干酪在硬度、弹性和粘聚性等指标方面具有较大差异。感官评价中,除添加小粒豆8号豆乳的双蛋白干酪带有较浓豆腥味外,其余组与对照组相差不大。相关性分析结果表明,大豆蛋白中球蛋白和β-伴球蛋白的比值(11S/7S)与双蛋白干酪的硬度和粘聚性显著相关,而大豆的蛋白含量、脂肪含量和植酸含量等指标与双蛋白干酪的品质指标无显著相关性。 相似文献
19.
Govindasamy-Lucey S Lin T Jaeggi JJ Johnson ME Lucey JA 《Journal of dairy science》2006,89(2):454-467
Compositional changes in raw and pasteurized cream and unconcentrated sweet cream buttermilk (SCB) obtained from a local dairy were investigated over 1 yr. Total phospholipid (PL) composition in SCB ranged from 0.113 to 0.153%. Whey protein denaturation in pasteurized cream over 1 yr ranged from 18 to 59%. Pizza cheese was manufactured from milk standardized with condensed SCB (∼34.0% total solids, 9.0% casein, 17.8% lactose). Effects of using condensed SCB on composition, yield, PL recovery, and functional properties of pizza cheese were investigated. Cheesemilks were prepared by adding 0, 2, 4, and 6% (wt/wt) condensed SCB to part-skim milk, and cream was added to obtain cheesemilks with ∼11.2 to 12.7% total solids and casein:fat ratio of ∼1. Use of condensed SCB resulted in a significant increase in cheese moisture. Cheese-making procedures were modified to obtain similar cheese moisture contents. Fat and nitrogen recoveries in SCB cheeses were slightly lower and higher, respectively, than in control cheeses. Phospholipid recovery in cheeses was below 40%. Values of pH and 12% trichloro-acetic acid-soluble nitrogen were similar among all treatments. Cheeses made from milk standardized with SCB showed less melt and stretch than control cheese, especially at the 4 and 6% SCB levels. Addition of SCB significantly lowered free oil at wk 1 but there were no significant differences at wk 2 and 4. Use of SCB did not result in oxidized flavor in unmelted cheeses. At low levels (e.g., 2% SCB), addition of condensed SCB improved cheese yield without affecting compositional, rheological, and sensory properties of cheese. 相似文献
20.
《Journal of dairy science》2022,105(6):4915-4924
The aim of this study was to manufacture magnesium-fortified Chihuahua cheese and to evaluate the effect of magnesium fortification on quality parameters. Addition of magnesium chloride to milk during pasteurization (5.44, 10.80, 16.40, 22.00, and 25.20 g of MgCl2·6H2O/L of milk) resulted in cheese with increased magnesium content, proportional to the amount of magnesium added (up to 2,957.13 mg of Mg/kg of cheese). As magnesium content increased, coagulation time and moisture content also increased, whereas calcium content decreased. Higher levels of magnesium fortification (16.40 g of MgCl2·6H2O/L of milk or more) induced the development of bitter-acid flavors and softer texture. Addition of 10.80 g of MgCl2·6H2O/L to milk resulted in Chihuahua cheese that meets regulatory standards and possesses physicochemical and sensory characteristics similar to those of nonfortified Chihuahua cheese. Under this milk fortification level, the manufactured cheese is able to provide 148.4 mg of magnesium per day (35% of the recommended daily intake of magnesium for adult males and 46% for adult females) assuming 3 portions (28 g each) are consumed. 相似文献