首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2,3-Bisphosphoglycerate mutase (BPGM) [EC 5.4.2.4] is a multifunctional enzyme that catalyzes both the synthesis and the degradation of 2,3-diphosphoglycerate (2,3-DPG) and contains three types of activities in that it functions as a 2,3-DPG synthetase, a phosphoglycerate mutase and a 2,3-DPG phosphatase. In humans, BPGM occurs only in erythrocytes and plays a pivotal role in the dissociation of oxygen from hemoglobin via 2,3-DPG. The present study shows that the specific activity of BPGM in erythrocytes of diabetic patients is decreased, compared to normal controls as judged by 2,3-DPG synthetase activity and immunoreactive contents. To understand the mechanism by which the enzyme is inactivated, the enzyme was purified from pooled erythrocytes from diabetic patients and subjected to a boronate affinity column. The flow through fraction was active while the bound fraction was completely inactive. The bound fraction was reactive to an anti-hexitollysine antibody, indicating that the enzyme had undergone glycation and inactivation. The primary glycated site of the enzyme was found to be Lys158 as judged by amino acid sequencing and the reactivity with an anti-hexitollysine IgG, after reverse-phase HPLC of the lysyl-endopeptidase-digested peptides. Extensive glycation of recombinant BPGM in vitro indicated that the glycation sites were Lys2, Lys4, Lys17, Lys42, Lys158, and Lys196. From these results, the loss of enzymatic activity appears to be due to the glycation of Lys158 which may be located in the vicinity of the substrate binding site.  相似文献   

2.
The biological responses of the heme biosynthesis pathway in male workers moderately exposed to lead are discussed in relation to the concentration of lead in the blood. The level of erythrocyte delta-aminolevulinic acid dehydratase (ALA-D) activity in the group of lead-exposed workers was remarkably reduced while the level of erythrocyte protoporphyrin (Proto) in them was strikingly increased, compared to normal levels. On the other hand, the amounts of hemoglobin (Hb) and urinary delta-aminolevulinic acid (ALA) in the group of lead-exposed workers kept the normal levels. In the workers moderately exposed to lead, the log of erythrocyte Proto level was closely correlated to the blood lead level and the sensitivity of the Proto test was almost equal to that of erythrocyte ALA-D test. It was observed that the erythrocyte Proto was remarkably increased even in lead-exposed workers whose ALA excretion into the urine was in the range of normal level.  相似文献   

3.
IgG in dialysate may have an important role in anti-infection mechanisms during continuous ambulatory peritoneal dialysis (CAPD). As Fc fragment oligosaccharidic chains are crucial for IgG effector functions, we have tested the hypothesis that IgG glycation might occur during CAPD and modify IgG properties. Purified normal IgG was incubated with glucose solutions of different concentrations and pH. Separation of glycated IgG was performed by affinity chromatography. Complement activation (C3c deposition) and phagocytosis by polymorphonuclear leucocytes (PMN) were studied in vitro using Staphylococcus aureus Wood (STAW) as antigen. In addition, we compared the percentages of glycated IgG in IgG purified from sera and dialysates of 12 CAPD patients. The percentage of glycated IgG after in vitro incubation of normal IgG with glucose solutions was directly proportional to glucose concentrations, incubation time and pH. Glycated IgG anti-STAW induced a higher C3c deposition than non-glycated IgG anti-STAW (C3c/IgG (mean +/- SD) 0.96 +/- 0.06 vs 0.79 +/- 0.08; P = 0.027). PMN phagocytosis was not affected by IgG glycation. The percentages of glycated IgG in dialysates of CAPD patients were greater than those in corresponding sera (5.38 +/- 2.36% vs 4.56 +/- 2.47%; P = 0.006). It is concluded that IgG glycation may take place in the peritoneal cavity during CAPD and lead to enhanced complement activation. This could explain the high degree of complement activation previously described in dialysate of CAPD patients and might theoretically result in a reduction of complement factors available in dialysate for adequate anti-infection mechanisms.  相似文献   

4.
Nonenzymatic glycation of proteins and oxidative stress are considered independent factors important in the development of the complications of diabetes but may be interrelated by the process of autoxidative glycation. This pathway involves monosaccharide autoxidation to a reactive ketoaldehyde analogue and subsequent reaction with protein to form a ketoimine adduct. This study demonstrates that delta-gluconolactone (delta-GL), an oxidised analogue of glucose, is a potent glycating agent in vitro of haemoglobin present in blood samples from insulin-dependent diabetic and non-diabetic human subjects and from spontaneously diabetic, insulin-dependent BB/Edinburgh (BB/E) rats. The percentage glycated haemoglobin after incubation (37 degrees C, 5 h) with delta-GL (25 mmol/l) was significantly (P < 0.002) higher than that observed using an equimolar concentration of glucose. Intravenous administration of delta-GL (1 g/kg) to non-diabetic BB/E rats also significantly increased glycation of haemoglobin (6.0 +/- 0.1% vs 4.9 +/- 0.1%, P < 0.01) whereas intravenous injection of an identical dose of glucose had no significant effect (5.1 +/- 0.1% vs 5.0 +/- 0.2%). These results support the hypothesis that nonenzymatic glycation of proteins involves attachment by both native and oxidised monosaccharides. Further investigation of the interactions between diabetes-associated increases in oxidative stress and glycation on the development and progression of the vascular complications of diabetes is necessary.  相似文献   

5.
Protein glycation and accumulation of advanced glycosylated end-products (AGEs) are supposed to play an important role in the process of aging. Dietary restriction increases life span and delays the onset of most age-associated diseases. Age-dependent changes in glucose homeostasis and glycated plasma proteins and hemoglobin were determined, and AGEs formation was measured as fluorescence in skin and aortic collagens in male Sprague-Dawley rats fed ad libitum or subjected to every-other-day feeding or 40% food restriction. In aging control rats, skin and aortic collagen-linked fluorescence increased with a similar exponential curve (aortic value being always higher), whereas glycated plasma protein and hemoglobin decreased slightly. Dietary restrictions decreased glycated plasma proteins and fluorescent products in skin collagen of younger but not older rats, and did not affect glycated hemoglobin or aortic collagen fluorescence. In conclusion, our data indicate that age-related changes in glucose homeostasis do not play a substantial role in aging; and collagen-linked fluorescence increases significantly during aging, but it may not be sensitive to dietary intervention.  相似文献   

6.
The glomerular basement membrane (GBM) is damaged in diabetes through complex mechanisms that are not fully understood. Prominent among them is nonenzymatic protein glycation leading to the formation of so-called advanced glycation end products (AGEs). We examined the effects of in vitro glycation of intact collagen type IV in bovine lens capsule (LBM) and kidney glomerular (GBM) basement membranes on their susceptibility to matrix metalloproteinases, using stromelysin 1 (MMP-3) and gelatinase B (MMP-9). Sites of cleavage of unmodified LBM collagen were located in the triple helical region. In vitro glycation by glucose severely inhibited the release of soluble collagen cleavage peptides by MMP-3 and MMP-9. The distribution of AGEs within the three domains of collagen IV (7S, triple helical, and noncollagenous NC1) were compared for LBM glycation using AGE fluorescence, pentosidine quantitation, and immunoreactivity towards anti-AGE antibodies that recognize the AGE carboxymethyllysine (CML). Marked asymmetry was observed, with the flexible triple helical domain having the most pentosidine and fluorescent AGEs but the least CML. The in vivo relevance of these findings is supported by preliminary studies of AGE distribution in renal basement membrane (RBM) collagen IV domains from human kidneys of two insulin-dependent diabetics and one normal subject. Pentosidine and fluorescent AGE distributions of diabetic RBM were similar to LBM, but the CML AGE in diabetic kidney was less in the triple helical domain than in NC1. Our results support the hypothesis that nonenzymatic glycation of collagen IV contributes to the thickening of basement membranes, a hallmark of diabetic nephropathy.  相似文献   

7.
Diabetic patients develop endothelial dysfunction early in the course of the disease. Atherogenic lipoproteins such as LDL and Lp(a) are important risk factors for endothelial dysfunction and undergo nonenzymatic glycation in hyperglycaemia. Here we assessed whether glycation of Lp(a) potentiates its damaging influence on endothelial function. Human Lp(a) was glycated by dialyzation for 7 days against buffer containing 200 mmol/l glucose, or sham-treated without glucose and oxidized by incubation with Cu++. The degree of glycation accounted to 32 +/- 4%, and glycation rendered Lp(a) more susceptible to oxidative modification when exposed to Cu++. Isolated rings of rabbit aorta were superfused with physiological salt solution, and isometric tension was recorded. Incubation of the aortic rings with sham-treated or with 30 microg/ml glycated Lp(a), not oxidized, had no influence on acetylcholine-induced, endothelium-dependent relaxation. Exposure of the aortic rings to 30 microg/ml oxidized non-glycated (ox) Lp(a) caused a significant inhibition (19% at 1 microM acetylcholine) of the endothelium-dependent relaxation. Incubation of aortic rings with 30 microg/ml oxidized glycated (glyc-ox) Lp(a) attenuated endothelium-dependent relaxation more potently than oxLp(a) (by 34% at 1 microM acetylcholine). The presence of diethyl-dithio-carbamate (DDC), an inhibitor of the endogenous superoxide dismutase (SOD), potentiated the inhibition of relaxation induced by oxLp(a) and by glyc-oxLp(a) [38% inhibition at 1 microM acetylcholine for oxLp(a), and 49% inhibition at 1 microM acetylcholine for glyc-oxLp(a)]. Co-incubation with the O2- scavenger 4,5-dihydroxy-1,3-benzene disulfonic acid disodium salt (TIRON) prevented the inhibition of relaxation by the oxidized lipoproteins, suggesting that enhanced NO-inactivation by O2- could be the underlying mechanism for the impairment of endothelium-dependent dilations by ox- and glyc-oxLp(a). The concentration of lysophosphatidycholine, a lipoprotein oxidation product and stimulus for O2- formation, was significantly enhanced in oxLp(a) and in glyc-oxLp(a) compared to native lipoproteins. Conclusion: Glycation enhances the endothelium-damaging influence of oxLp(a), presumably by enhancing oxidative stress. The likely mechanism for attenuation of endothelium-dependent dilations is increased formation of O2-, resulting in inactivation of nitric oxide. This mechanism may play an important role in diabetic patients and may contribute to disturbed organ perfusion.  相似文献   

8.
Lead and cadmium were administered intraperitoneally, singly and jointly, to the mice. The levels of cadmium, copper, manganese, lead and zinc were determined in liver, kidney and brain by atomic absorption spectrophotometric technique and delta-aminolevulinic acid dehydratase (ALA-D) activity was determined in erythrocytes. The tissue levels of some of these metals were found significantly altered by cadmium and lead both, but cadmium was found to have no effect on blood on ALA-D activity.  相似文献   

9.
OBJECTIVE: To examine the effects of vitamin E on total serum protein glycation (fructosamine), hemoglobin glycation (HbA1c), and serum levels of glucose, total cholesterol, triglycerides, LDL-C, HDL-C, apolipoprotein A1 and apolipoprotein B. MATERIAL AND METHODS: Sixty poorly controlled diabetic patients were randomly assigned to receive either 1200 mg/day of vitamin E or identical placebo capsules during a two month period following a double blind cross-over design with a four week wash-out period between regimens. RESULTS: Seven patients were excluded from the study because of reasons not related to the medication. In the remaining 53 patients, the levels of serum glucose, fructosamine, HbA1c, total cholesterol, HDL-C, LDL-C, Apo A1 and Apo B did not vary significantly with vitamin E as compared with placebo. CONCLUSIONS: No significant effects of vitamin E on any of the parameters evaluated were observed in poorly controlled diabetic patients.  相似文献   

10.
We reported recently that a rabbit reticulocyte 66-kDa protein (termed RF-hsp 70 by our laboratory and p60 and hop by others) functions as a hsp 70 recycling protein and markedly enhances the renaturation of luciferase by hsp 70 (Gross, M., and Hessefort, S. (1996) J. Biol. Chem. 271, 16833-16841). In this report, we confirm that the ability of RF-hsp 70 to promote the conversion of hsp 70. ADP to hsp 70.ATP, thus enhancing the protein folding activity of hsp 70, is caused by the purified 66-kDa protein and not by a trace DnaJ/hsp 40 protein contaminant. To determine the relationship between RF-hsp 70 and the DnaJ/hsp 40 heat shock protein family, which also enhances protein renaturation by hsp 70, we purified a 38-kDa protein from rabbit reticulocyte lysate based upon its ability to stimulate renaturation of luciferase by hsp 70. Partial amino acid sequencing of this 38-kDa protein has indicated, unexpectedly, that it is the enzyme delta-aminolevulinic acid dehydratase (ALA-D) and that it does not contain detectable sequences corresponding to the DnaJ/hsp 40 protein family. In addition, immunoblot analysis with a polyclonal antibody made to HeLa cell hsp 40 (from StressGen) confirms that our purified ALA-D contains no hsp 40, although hsp 40 is present in relatively crude rabbit reticulocyte protein fractions. Rabbit reticulocyte ALA-D is about as active in converting delta-aminolevulinic acid to porphobilinogen and as Zn2+-dependent as ALA-D purified from other sources. Rabbit reticulocyte ALA-D stimulates the renaturation of luciferase by hsp 70 up to 10-fold at concentrations that are the same as or less than that of hsp 70, and it has no renaturation activity in the absence of hsp 70. The renaturation effect of ALA-D is additive with that of RF-hsp 70 at limiting or saturating concentrations of each, and, unlike RF-hsp 70, ALA-D does not promote the dissociation of hsp 70.ADP in the presence of ATP. The renaturation-enhancing effect of ALA-D may be caused by a region near its carboxyl terminus which has sequence homology to the highly conserved domain of the DnaJ protein family, which is similar to the sequence homology between this domain and a carboxyl-terminal region in auxilin, a DnaJ-like protein that requires this region for its hsp 70-dependent function (Ungewickell, E., Ungewickell, H., Holstein, S. E. H., Lindner, R., Prasad, K., Barouch, W., Martin, B., Greene, L. E., and Eisenberg, E. (1995) Nature 378, 632-635).  相似文献   

11.
In order to investigate useful indicators of lead contamination, 108 Japanese Black calves from a lead-contaminated farm were used. The lead concentrations in blood (Ph-B), delta-aminolevulinic acid dehydratase (ALA-D) activities, and free erythrocyte protoporphyrin (FEP) concentrations were examined. A significant negative correlation was obtained between Pb-B concentrations and ALA-D activities (r = -0.621, p < 0.01). A significant positive correlation was obtained between Ph-B concentrations and FEP concentrations (r = 0.850, p < 0.01). The calves were divided by Pb-B concentrations (micrograms/100 ml) into 5 groups (A = < or = 30, B = 31 approximately 90, C = 91 approximately 150, D = 151 approximately 210, E = > or = 211) to observe the relation of ALA-D activities, FEP concentrations and ALA-D activities in group B (r = -0.706, p < 0.05). A significant positive correlation was obtained between Pb-B concentrations and FEP concentrations in groups A, B and D (A = r = 0.496, p < 0.01; B = r = 0.686, p < 0.01; D = r = 0.529, p < 0.05). These results indicate that FEP concentrations were good indicators of lead contamination.  相似文献   

12.
Phenylhydroxylamine added to human red cells under aerobic conditions and in the presence of glucose was partly reduced to aniline. About half the hydroxylamine was recovered as amine after a 2-hr incubation. The aniline, after acetylation, was identified as acetanilide by melting point, Rf-value in TCL as well as UV, IR, and NMR spectroscopy. The fate of the remaining phenylhydroxylamine was followed by use of 14C-labeled phenylhydroxylamine. About 30% of the total radioactivity was bound to hemoglobin or other proteins and about 20% was found in highly polar low-molecular substances which were insoluble in organic solvents. The elucidation of the sites at which phenylhydroxylamine was bound to hemoglobin was complicated by the lability of the bonds. When purified human hemoglobin had reacted with radioactive phenylhydroxylamine, large proportions of the radioactivity bound to hemoglobin were removed by treatment with acid or with PMB for separation of alpha- and beta-chains. The radioactive compound liberated from hemoglobin by acid was found to be aniline. After reaction with phenylhydroxylamine the number of SH groups titrable with PMB was found to be diminished. Pretreatment of hemoglobin with N-ethylmaleimide or PMB decreased the amount of phenylhydroxylamine bound to hemoglobin but did not fully prevent the reaction. Tryptic digestion of hemoglobin after reaction with radioactive phenylhydroxylamine yielded tryptic peptides with lower specific activity than that of hemoglobin. Chymotryptic digestion of the tryptic core yielded a core with specific activity much higher than that of hemoglobin. Fingerprinting of the tryptic or chymotryptic hydrolyzates showed the presence of peptides with high and other ones with low or no radioactivity and of radioactive compounds which did not react with ninhydrin. In the covalent binding of phenylhydroxylamine to globin the SH group beta93 plays an important role, but other yet unknown sites are also reactive.  相似文献   

13.
Tau is a microtubule-associated protein that loses microtubule binding activity and aggregates into paired helical filaments (PHFs) in Alzheimer's disease. Nonenzymic glycation is one of the posttranslational modifications detected in PHF-tau, but not in normal tau. PHF-tau has reduced ability to bind to microtubules. To determine whether glycation of tau occurs in its microtubule binding domains, we have characterized in vitro glycation sites of the longest isoform of tau, which has four microtubule binding domains (Tau-4). The identified glycation sites are Lys-87, 132, 150, 163, 174, 225, 234, 259, 280, 281, 347, 353, and 369. We have also studied glycation of another isoform of tau, which has only three microtubule binding domains (Tau-3). This isoform is modified by glucose 15-20% more slowly than Tau-4. However, the glycation sites appear to be the same in both isoforms, except for Lys-280 and 281; these are located in the second microtubule binding domain, which is missing in Tau-3. Lys-150, 163, and 174 are located within or proximal to the sequence of tau that is involved in the microtubule nucleation activity, and Lys-259, 280, 281, 347, 353, and 369 are located in the microtubule binding domains. Glycation at these sites can affect the functional properties of tau, and advanced glycation at these sites might lead to the formation of insoluble aggregates similar to the ones seen in Alzheimer's disease.  相似文献   

14.
Prolonged hyperglycemia in type II diabetic patients is linked both with diabetic complications and with further impairment of glucose homeostasis, possibly due to glucose toxicity of the beta cell. While the connection between the accumulation of extracellular advanced glycation end products (AGEs) and the development of complications is well established, it has only recently been suggested that intracellular glycation may be equally adverse and could be involved in the pathogenesis of glucose toxicity in vitro. Aminoguanidine is a recognized inhibitor of the formation of both extracellular and intracellular AGEs. In this study, we show that the development of diabetes, measured by increased water intake and concomitant midday blood glucose levels in type II genetically diabetic mice, is reduced by treatment with aminoguanidine at a dosage of 500 mg/kg/d for 12 weeks in the diet. In addition, at the end of the study, aminoguanidine reduced the decline in serum and pancreatic insulin levels and the degree of pancreatic islet morphological degeneration, all of which are associated with pancreatic insufficiency following prolonged hyperglycemia in this animal model. These results suggest that AGEs may be involved in the aggravation of type II diabetes in vivo and aminoguanidine may be beneficial in its treatment.  相似文献   

15.
In this study we have investigated whether proteoglycans (aggrecan) are modified by nonenzymatic glycation as in collagen. Purified human aggrecan from osteoarthritic and normal human knee articular cartilage was assayed for pentosidine, a cross-link formed by nonenzymatic glycation, using reverse-phase HPLC. In addition, an in vitro study was done by incubation of purified bovine nasal cartilage aggrecan with ribose. Pentosidine was found in all the purified human aggrecan samples. 2-3% of the total articular cartilage pentosidine was found in aggrecan. Purified link protein also contained penosidine. The in vitro study led to pentosidine formation, but did not appear to increase the molecular size of the aggrecan suggesting that pentosidine was creating intramolecular cross-links. Similar amounts of glycation were found in osteoarthritic and normal cartilage. Like collagen, aggrecan and link proteins are crosslinked by nonenzymatic glycation in normal and osteoarthritic cartilage. Crosslinking could be reproduced, in vitro, by incubating aggrecan with ribose.  相似文献   

16.
PURPOSE: To establish whether advanced glycation is the major mechanism for yellowing of lens proteins. METHODS: Synchronous fluorescence (SF) and immunochemical assays were used to study glycation in vitro and in vivo. In the in vitro study, advanced glycation end products (AGEs) were prepared and used as antigens to induce antibodies to AGEs. The in vitro AGEs and classified nuclear cataracts were analyzed by SF and immunochemical assays. RESULTS: In vitro AGEs generated from various glycating agents and carrier proteins displayed strong SF above 350 nm; the spectra were well resolved with major bands at 380 nm and 420 nm. Samples from human lenses manifested a band at 395 nm in addition to the two bands shown by in vitro AGEs. SF intensity is greater for the water-insoluble (WI) than water-soluble (WS) fraction, but both increased with increasing nuclear color. The immunoreactivity data also showed that the WI fraction contained more AGEs than the WS fraction and that the amount of AGEs increased with increasing nuclear color. CONCLUSIONS: Fluorescence and immunoassays indicated that pigmented AGEs contributed to yellowing of the crystalline lens nucleus.  相似文献   

17.
Nonenzymatic reactions between glucose and proteins yield advanced glycation end products (AGE) such as pentosidine. AGE accumulate in diabetic patients, alter the structure and function of tissue proteins, stimulate cellular response, and have thus been implicated in diabetic tissue damage. The present study was undertaken to assess the factors determining plasma total pentosidine level in diabetic patients and the possible relation between plasma pentosidine level and diabetic complications. In diabetic patients, including patients with renal failure, plasma pentosidine levels, assessed by HPLC assay, were correlated with serum creatinine (P < 0.0001). In patients with normal renal function, pentosidine levels were correlated with blood glucose control (hemoglobin Alc: P = 0.0028; fructoselysine: P = 0.0133), serum creatinine (P = 0.029), patient age (P = 0.0416), duration of diabetes (P = 0.0431), and total cholesterol (P = 0.0056) and LDL-cholesterol (P = 0.0208). Multiple regression analysis revealed an independent influence of hemoglobin Alc and serum creatinine on pentosidine levels (r2 = 0.216, P = 0.0026). Pentosidine levels were higher in patients with than in those without hypertension (P = 0.043) or ischemic heart diseases (P = 0.0061). No such differences were observed between patients with and without albuminuria or retinopathy. Multiple regression analysis revealed an independent influence of plasma pentosidine on the presence of hypertension (r2 = 0.129, P = 0.0382) and of plasma pentosidine and HDL-cholesterol on the presence of ischemic heart disease (r2 = 0.326, P = 0.0012). The present study demonstrated that plasma pentosidine level was significantly influenced by the quality of glycemic control and renal function. Pentosidine level was also correlated with hypertension and ischemic heart disease, and might be taken as a biomarker of diabetic cardiovascular risk.  相似文献   

18.
An electrospray ionization-mass spectrometric procedure has been developed for determining glycohemoglobin. Whole-blood samples from 78 diabetic and 50 nondiabetic subjects (glycation range 3-15%, as determined by electrospray mass spectrometry) were diluted 500-fold in an acidic denaturing solvent and introduced directly into a mass spectrometer. The resulting mass spectra were then processed to estimate the percentage of glycohemoglobin present in the sample. Total analysis time, including plotting the spectra and computing the percentage of glycation, was approximately 3 min. The imprecision (CV) of the method was < 5.1% for inter- and intrabatch analyses for total glycohemoglobin in the range 3.6-14%. Comparison of the mass spectrometric results with those from established affinity chromatographic procedures showed good overall agreement. The relative glycation of the alpha- and beta-chains was determined directly and was shown to be constant (0.64:1) over the glycation range measured. Only single glucose attachment to both the alpha- and beta-chains was observed.  相似文献   

19.
Hemoglobin A1c (HbA1c) is a stable minor Hb variant formed in vivo by posttranslational modification by glucose, originally identified by using cation exchange chromatography, and containing primarily glycated N-terminal beta-chains. However, the structure(s) of the quantified species has not been elucidated, and the available methods lack a reference standard. We used electrospray ionization mass spectrometry to determine the extent of glycation of samples separated by boronate affinity and/or cation exchange chromatography. Analyses of clinical samples were consistent with the curvilinear relationship of patient glucose and HbA1c. As glycation increased, the ratio of beta-chain to alpha-chain glycation increased, and the number of glycation sites on the beta-chain increased, although these were relatively minor components. We found several glycated species that cochromatographed with HbA1c on cation exchange, including species with both glycated alpha- and beta-chains, nonglycated alpha- and glycated beta-chains, and multiply glycated beta-chains. The combined use of affinity and cation exchange chromatography with structural confirmation by electrospray ionization mass spectrometry was found to be useful in producing samples of sufficient purity for the standardization of glycohemoglobin clinical assays.  相似文献   

20.
Hemoglobin (Hb) Rambam, or beta69[E13]Gly-->Asp, has been identified in a German woman also suffering from non-insulin-dependent diabetes mellitus and chronic obstructive pulmonary disease. This is the first observation of this Hb variant in a German family thus far. The detailed evaluation of its structure using electrospray mass spectrometry revealed new minor glycohemoglobin components and showed that the attachment of glucose to the beta NH2 terminus occurred at an almost identical rate in both wild-type and mutant beta-chains. However, the introduction of a carboxyl group at beta69 seems to increase the glycation of epsilon-amino groups of lysine residues. The glycemic state in the propositus was well reflected by the total glycohemoglobin concentrations but not by the Hb A1c values, which did not reflect hemoglobin glycation in this patient. This case demonstrates that Hb A1c cannot be used reliably in the management of diabetic patients carrying Hb variants such as Hb Rambam. Functional studies of the whole blood of the heterozygous carrier demonstrated extremely low oxygen affinity, which may have been caused by increased 2,3-diphosphoglycerate related to chronic obstructive pulmonary disease and hyperthyroidism. None of the clinical symptoms could be directly associated to Hb Rambam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号