首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct modulation at 40 Gb/s of a 1.3-mum InGaAlAs distributed feedback ridge waveguide laser is experimentally demonstrated. By combination of the high differential gain of an InGaAlAs multiquantum well active layer, a short cavity length of 100 mum, and a low-resistance notch-free grating, it achieves high bandwidth of 29 GHz and high-extinction ratio of 5 dB at 40-Gb/s modulation. Moreover, the laser operates at a record maximum ambient temperature of 60degC under 40-Gb/s directly modulation. It also achieves 40-Gb/s modulated transmission over 2 km with a low power penalty of 0.25 dB at 25degC .  相似文献   

2.
A 1.3-/spl mu/m AlGaInAs multiquantum well ridge waveguide distributed feedback laser diode was developed. By forming n-InGaAsP grating in the n-InP cladding layer close to the active region, accumulation of the holes in the grating layer was reduced and over 5 mW of output power was obtained at 120/spl deg/C. Clear eye opening was confirmed with no mask hits for OC-192 under 10-Gb/s direct modulation at the temperature up to 120/spl deg/C.  相似文献   

3.
Transceivers for 300-m multimode links, based on a serial 10-Gb/s laser source and incorporating a receiver based on electronic dispersion compensation (EDC), are creating the first high-volume application for a 10-Gb Fabry-Perot (FP). A highly reliable and high-yield uncooled ridge FP laser is presented. The device shows excellent power characteristics in the 25/spl divide/150/spl deg/C temperature range with very high T/sub 0/ (95 K in the temperature range 0/spl divide/85/spl deg/C and still 78 K at 150/spl deg/C). Outstanding dynamic performances are also shown: 6 dB of extinction ratio can be achieved up to 110/spl deg/C by using a constant current swing of 50 mA. Because of their enhanced performances, these devices have enabled single temperature setting of the optical module, leading to a significant test cost reduction.  相似文献   

4.
The development of the 10GBASE-LX4 communication standard for aggregated 10-Gb/s rates feeds the need for low-cost laser sources in the 1275-1350-nm wavelength range operating at modulation rates of 3.125 Gb/s. We present comprehensive characterization of wafer fused vertical-cavity surface-emitting lasers with characteristics that meet the IEEE802.3ae specification for 10GBASE-LX4. These include output power greater than 1.5 mW up to 80/spl deg/C, wavelength around 1340 nm, single-mode emission and modulation at 3.125 Gb/s, and wide open eyes with rise and fall times below 100 ps up to 70/spl deg/C.  相似文献   

5.
Among the new semiconductor materials for telecom devices, the GaInNAs-GaAs structure presents interesting properties for low-cost applications, like high differential gain and high T/sub 0/. Another key aspect of the performance is the behavior of the GaInNAs-GaAs based lasers under high bit rate direct modulation. Here, we demonstrate the dynamic capabilities of GaInNAs-GaAs three-quantum-well ridge structure through 2.5-Gb/s directly modulated laser emission and transmission on standard fiber, in the temperature range 25/spl deg/C-85/spl deg/C. Besides transmission is demonstrated up to 10 Gb/s at 25/spl deg/C on the same fiber, without penalty and bit-error-rate floor.  相似文献   

6.
Continuous wave (CW) operation at room temperature of electrically pumped InGaAlAs/InP vertical-cavity surface-emitting lasers (VCSELs) at emission wavelengths as high as 2.3 /spl mu/m is demonstrated for the first time. Devices with 15 /spl mu/m active region diameter show a maximum output power of 0.75 mW at 20/spl deg/C and a maximum CW operating temperature of 45/spl deg/C.  相似文献   

7.
We demonstrate efficient error-free 3.125-Gb/s modulation of InP-based 1.3-/spl mu/m vertical-cavity surface-emitting lasers with AsSb-based distributed Bragg reflectors up to 60/spl deg/C. These devices demonstrated high differential efficiencies [>60% at room temperature (RT)], which resulted in a required bias current for modulation of only 5.9 mA. The measured extinction ratios were greater than 8 dB up to 60/spl deg/C with a peak-to-peak drive voltage of only 800 mV. The 3-dB-down RT small-signal bandwidth was 4.4 GHz at a bias of 5.9 mA.  相似文献   

8.
High-performance operation of a 10 Gbit/s optical transmitter based on a directly modulated InGaAlAs Fabry-Perot laser, in the laser temperature range of -1 to 126/spl deg/C, is demonstrated. Clear open eye diagrams are obtained over this entire range, with margins greater than 5%, and with minimal variations in output power and extinction ratio  相似文献   

9.
1.27-/spl mu/m InGaAs: Sb-GaAs-GaAsP vertical-cavity surface-emitting lasers (VCSELs) were grown by metal-organic chemical vapor deposition and exhibited excellent performance and temperature stability. The threshold current changes from 1.8 to 1.1 mA and the slope efficiency falls less than /spl sim/35% as the temperature raised from room temperature to 70/spl deg/C. With a bias current of only 5 mA, the 3-dB modulation frequency response was measured to be 8.36 GHz, which is appropriate for 10-Gb/s operation. The maximal bandwidth is measured to be 10.7 GHz with modulation current efficiency factor (MCEF) of /spl sim/5.25 GHz/(mA)/sup 1/2/. These VCSELs also demonstrate high-speed modulation up to 10 Gb/s from 25/spl deg/C to 70/spl deg/C.  相似文献   

10.
Wafer-fused InGaAlAs/AlGaAs vertical cavity surface emitting lasers with InAlGaAs-based tunnel junction injection have shown record high 0.7 mW singlemode output power in the 10-80/spl deg/C temperature range. Single transverse-mode operation with 35 dB sidemode suppression and low divergence beam with 9/spl deg/ half width at half maximum has been measured on devices with 7 /spl mu/m aperture.  相似文献   

11.
Wide temperature range, from 0 to 85/spl deg/C, operation of 1.55 /spl mu/m, 40 Gbit/s InGaAlAs multiple quantum well electro-absorption optical modulators is demonstrated for the first time.  相似文献   

12.
Limitations on transmission by an uncooled InGaAlAs Fabry-Perot (FP) laser in 10-Gb/s operation are experimentally and theoretically investigated. The InGaAlAs laser has both high relaxation-oscillation frequency and superior light-current characteristics over a wide temperature range, making it suitable for uncooled operation at 10 Gb/s. Over most of the temperature range used in transmission testing with standard-dispersion fiber, a small power penalty of 1 dB for a bit error rate (BER) of 10/sup -12/ was obtained in transmission over 4-7 km at the measured temperature range, whereas an error floor was seen in transmission over greater distance, despite the negative chromatic dispersion between the fiber and laser light. Theoretical analysis of these results indicates that mode-partition noise (MPN) imposes the major limitation on transmission distance. Moreover, the minimum transmission distance was estimated as 2.1 km, even when the production tolerance of lasing characteristics and zero-dispersion range of installed fiber are taken into account.  相似文献   

13.
In this letter, we proposed an alternate method by using the Fe-doped InGaAsP-InP hybrid grating layers to fabricate the 1.3-/spl mu/m current-blocking-grating complex-coupled distributed-feedback (CBG CC-DFB) laser diodes (LDs) grown by metal-organic chemical vapor deposition (MOCVD). By combining the Fe-doped InGaAsP-InP grating layers, the CBG CC-DFB LDs can provide high optical DFB coupling coefficient and high current confining ability. Moreover, the current aperture in the lateral direction can be easily controlled by the self-aligned MOCVD regrowth process. Therefore, the manufacture of CBG CC-DFB buried heterostructure LDs is easy as the ridge-waveguide LDs. The LDs exhibit a low threshold current of 5.3 mA, a high slope efficiency of 0.42 mW/mA, and a stable single mode with a high sidemode suppression ratio of /spl sim/42 dB at two times the threshold (10.5 mA). Even at high temperatures, these LDs still have an extremely low threshold current of 15.8 mA at 90/spl deg/ and a small variation in slope efficient of only -1 dB at the temperatures between 20/spl deg/ and 80/spl deg/. Furthermore, these LDs show a high-speed characteristic of more than 11.8 GHz at 20/spl deg/, which are suitable for 10-Gb/s Ethernet and OC-192 applications.  相似文献   

14.
High-power 2.3-/spl mu/m In(Al)GaAsSb-GaSb type-I double quantum-well diode laser arrays were fabricated and characterized. Linear laser arrays with 19 100-/spl mu/m-wide elements on a 1-cm-long bar generated 10 W in continuous-wave (CW) mode and 18.5 W in quasi-CW mode (30 /spl mu/s/300 Hz) at a heatsink temperature of 18/spl deg/C. Array power conversion efficiency peaked at 30 A and was about 9%. Device internal efficiency was about 50%. Individual laser differential gain with respect to current was about twice as high as in InP-based laser heterostructures, demonstrating the potential of GaSb-based material system for high-power CW room-temperature laser diode arrays.  相似文献   

15.
A directly modulated 1.3 /spl mu/m InGaAsP DFB laser with a simple buried structure using Ru-doped semi-insulating InP is presented. The high relaxation oscillation frequency of 10 GHz was obtained at 95/spl deg/C. Clear eye openings under 10 Gbit/s direct modulation were achieved from 0 to 100/spl deg/C.  相似文献   

16.
Excellent lasing performance is demonstrated for a 1.83-/spl mu/m InGaAlAs-InP vertical-cavity surface-emitting laser (VCSEL) utilizing the buried tunnel junction technology. Threshold currents as low as 190 /spl mu/A at 20/spl deg/C and operating temperatures as high as 90/spl deg/C have been measured. These values are the best ones reported so far for long-wavelength VCSELs.  相似文献   

17.
Short-haul fiber-optic communication systems require high-speed semiconductor lasers that can operate uncooled over a wide temperature range. In this letter, we describe high-speed short-cavity InGaAs-GaAs multiple-quantum-well lasers operating at 1.1-/spl mu/m wavelength. The Fabry-Perot lasers were fabricated in a triple-mesa geometry suitable for on-wafer probing. With 3/spl times/200 /spl mu/m/sup 2/ ridge-waveguide lasers, which showed the best compromise between high-temperature and high-speed performance, a 3-dB modulation bandwidth of 14.5 GHz at 130/spl deg/C was achieved. Uncooled 20-Gb/s operation of these lasers is presented over a wide-temperature range from 25/spl deg/C to 130/spl deg/C without automatic power control.  相似文献   

18.
For the first time with a directly modulated InAs-GaAs quantum-dot laser, high extinction ratio (up to 17 dB) and 25/spl deg/C-85/spl deg/C single-mode-fiber data floor-free transmissions are achieved at 2.5 Gb/s. Moreover, an interferometric technique showed a nearly constant Henry factor /spl sim/2 until a bias current six times the threshold current.  相似文献   

19.
Pulsed lasing operation of a 670 nm AlGaInP-based oxide-confined vertical-cavity surface-emitting laser (VCSEL) at high temperatures is demonstrated. At +120/spl deg/C heatsink temperature output power exceeded 0.5 mW and at +160/spl deg/C 25 /spl mu/W output power was achieved  相似文献   

20.
We present the first continuous-wave (CW) edge-emitting lasers at 1.5 /spl mu/m grown on GaAs by molecular beam epitaxy (MBE). These single quantum well (QW) devices show dramatic improvement in all areas of device performance as compared to previous reports. CW output powers as high as 140 mW (both facets) were obtained from 20 /spl mu/m /spl times/ 2450 /spl mu/m ridge-waveguide lasers possessing a threshold current density of 1.06 kA/cm/sup 2/, external quantum efficiency of 31%, and characteristic temperature T/sub 0/ of 139 K from 10/spl deg/C-60/spl deg/C. The lasing wavelength shifted 0.58 nm/K, resulting in CW laser action at 1.52 /spl mu/m at 70/spl deg/C. This is the first report of CW GaAs-based laser operation beyond 1.5 /spl mu/m. Evidence of Auger recombination and intervalence band absorption was found over the range of operation and prevented CW operation above 70/spl deg/C. Maximum CW output power was limited by insufficient thermal heatsinking; however, devices with a highly reflective (HR) coating applied to one facet produced 707 mW of pulsed output power limited by the laser driver. Similar CW output powers are expected with more sophisticated packaging and further optimization of the gain region. It is expected that such lasers will find application in next-generation optical networks as pump lasers for Raman amplifiers or doped fiber amplifiers, and could displace InP-based lasers for applications from 1.2 to 1.6 /spl mu/m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号