首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, interacts with acidic phospholipids, such as cardiolipin, and its activity seems to be regulated by membrane binding in cells. In this study we introduced site-directed mutations at the positions of hydrophobic or basic amino acids which are conserved among various bacteria species and which are located in the putative membrane-binding region of DnaA protein (from Asp357 to Val374). All mutant DnaA proteins showed much the same ATP and ADP binding activity as that of the wild-type protein. The release of ATP bound to the mutant DnaA protein, in which three hydrophobic amino acids were mutated to hydrophilic ones, was stimulated by cardiolipin, as in the case of the wild-type protein. On the other hand, the release of ATP bound to another mutant DnaA protein, in which three basic amino acids were mutated to acidic ones, was not stimulated by cardiolipin. These results suggest not only that the region is a membrane-binding domain of DnaA protein but also that these basic amino acids are important for the binding and the ionic interaction between the basic amino acids and acidic residues of cardiolipin and is involved in the interaction between DnaA protein and cardiolipin.  相似文献   

2.
3'-Phosphoadenosine-5'-phosphosulfate (PAPS) synthase is a bifunctional protein consisting of an NH2-terminal APS kinase and a COOH-terminal ATP sulfurylase. Both catalytic activities require ATP; the APS kinase domain involves cleavage of the beta-gamma phosphodiester bond of ATP, whereas the ATP sulfurylase domain involves cleavage of the alpha-beta phosphodiester bond of ATP. Previous mutational studies have suggested that beta-gamma phosphodiesterase activity involves a highly conserved NTP-binding P-loop motif located in the adenosine-5'-phosphosulfate kinase domain of PAPS synthases. Sequence alignment analysis of PAPS synthases and the superfamily of TagD-related nucleotidylyltransferases revealed the presence of a highly conserved HXGH motif in the ATP sulfurylase domain of PAPS synthases, a motif implicated in the alpha-beta phosphodiesterase activity of cytidylyltransferases. Thus, site-selected mutagenesis of the HXGH motif in the ATP sulfurylase domain of human PAPS synthase (amino acids 425-428) was performed to examine this possibility. Either H425A or H428A mutation produced an inactive enzyme. In contrast, a N426K mutation resulted in increased enzymatic activity. A G427A single mutant resulted in only a modest 30% reduction in catalytic activity, whereas a G427A/H428A double mutant produced an inactive enzyme. These results suggest an important role for the HXGH histidines in the ATP sulfurylase activity of bifunctional PAPS synthase and support the hypothesis that the highly conserved HXGH motif found in the ATP sulfurylase domain of PAPS synthases is involved in ATP binding and alpha-beta phosphodiesterase activity.  相似文献   

3.
The known mammalian 3':5'-cyclic nucleotide phosphodiesterases (PDEs) contain a conserved region located toward the carboxyl terminus, which constitutes a catalytic domain. To identify amino acids that are important for catalysis, we introduced substitutions at 23 conserved residues within the catalytic domain of the cGMP-binding cGMP-specific phosphodiesterase (cGB-PDE; PDE5). Wild-type and mutant proteins were compared with respect to Km for cGMP, kcat, and IC50 for zaprinast. The most dramatic decrease in kcat was seen with H643A and D754A mutants with the decrease in free energy of binding (DeltaDeltaGT) being about 4.5 kcal/mol for each, which is within the range predicted for loss of a hydrogen bond involving a charged residue. His643 and Asp754 are conserved in all known PDEs and are strong candidates to be directly involved in catalysis. Substitutions of His603, His607, His647, Glu672, and Asp714 also produced marked changes in kcat, and these residues are likely to be important for efficient catalysis. The Y602A and E775A mutants exhibited the most dramatic increases in Km for cGMP, with calculated DeltaDeltaGT of 2.9 and 2.8 kcal/mol, respectively, that these two residues are important for cGMP binding in the catalytic site. Zaprinast is a potent competitive inhibitor of cGB-PDE, but the key residues for its binding differ significantly from those that bind cGMP.  相似文献   

4.
DNA photolyases catalyze the light-dependent repair of pyrimidine dimers in DNA. We have utilized chemical modification and site-directed mutagenesis to probe the interactions involved in substrate recognition by the yeast photolyase Phr1. Lys517 was protected from reductive methylation in the presence of substrate, but not in its absence, and the specific and nonspecific association constants for substrate binding by Phr1 (Lys517-->Ala) were decreased 10-fold. These results establish a role for Lys517 in substrate binding. Mutations at Arg507, Lys463, and Trp387 reduced both the overall affinity for substrate and substrate discrimination. Sites of altered interactions in ES complexes were identified by methylation and ethylation interference techniques. Interaction with the base immediately 3' to the dimer was altered in the Phr1(Lys517-->Ala). DNA complex, whereas interactions with the phosphate and base immediately 5' to the dimer were reduced when Phr1(Arg507-->Ala) bound substrate. Multiple interactions 5' and 3' to the dimer were perturbed in complexes containing Phr1(Trp387-->Ala) or Phr1(Lys463-->Ala). In addition the quantum yield for dimer photolysis by Phr1(Trp387-->Ala) was reduced 3-fold. The locations of these mutations establish that a portion of the DNA binding domain is comprised of residues in the highly conserved carboxyl-terminal half of the enzyme.  相似文献   

5.
The eukaryotic polymerase processivity factor, PCNA, interacts with cell cycle regulatory proteins such as p21(WAF1/Cip1) and Gadd45, as well as with proteins involved in the mechanics of DNA repair and replication. A conserved PCNA-binding motif is found in a subset of PCNA-interacting proteins, including p21, suggesting that the regulation of these interactions is important for the co-ordination of DNA replication and repair. We have identified several classes of protein which bind to Drosophila PCNA. Two of these proteins contain the consensus PCNA-binding domain: one is the Dacapo protein, a Drosophila homologue of p21(WAF1/Cip1), and the second is the transposase encoded by the Pogo DNA transposon . A conserved PCNA-binding domain is also present in a human relative of Pogo , named Tigger , suggesting that this domain has a functional role in this class of transposable element. This raises interesting possibilities for a novel method of transposition in which the transposase might be targeted to replicating DNA. Finally, we have investigated the use of this conserved PCNA-binding domain as a predictor of PCNA-binding capacity.  相似文献   

6.
The present study tests whether lesions small enough to allow the rapid reestablishment of a normally aligned tract glial framework would provide a permissive environment for the regeneration of cut adult CNS axons. We made penetrating microlesions which cut a narrow beam of axons in the adult rat cingulum, but caused minimal damage to the tract glial framework and no cavitation. The proximal tips of cut axons were identified by enhanced immunoreactivity for low affinity neurotrophin receptor, p75. From 1 day they became expanded into large growth-cone-like structures. At later times some axons turned back and extended in the reverse direction. Up to 14 days (after which time p75 could no longer be used as a marker), no axons advanced beyond the line of the lesion. From 1 to 2 days, OX42 immunostaining and electron microscopy showed that the lesion site was densely infiltrated by macrophages, which disappeared by 3 to 4 days. This was followed by a local hypertrophy of the OX42 immunoreactive resident tract microglial cells and an increase in both GFAP and vimentin immunoreactivity of the tract astrocytes. These responses were greatly reduced by 8 days, when the longitudinal alignment of glial processes across the lesion site was similar to that of an undamaged tract. The large growth-cone-like structures formed at the ends of the cut axons resemble those of developing axons exposed to chemorepulsive factors. This suggests that cellular elements in adult tract lesions may also exert chemorepulsive influences blocking regeneration of axons even in an apparently "open" tract framework.  相似文献   

7.
The aim of the present study was to identify the N-terminal regions of human corticotropin-releasing factor (CRF) receptor type 1 (hCRF-R1) that are crucial for ligand binding. Mutant receptors were constructed by replacing specific residues in hCRF-R1 with amino acids from the corresponding position in the N-terminal region of the human vasoactive intestinal peptide receptor type 2 (hVIP-R2). In cyclic AMP stimulation and CRF binding assays, it was established that two regions within the N-terminal domain were crucial for the binding of CRF receptor agonists and antagonists: one region mapping to amino acids 43-50 and a second amino acid sequence extending from position 76 to 84 of hCRF-R1. Recently, it was found that the latter sequence plays a very important role in determining the high ligand selectivity of the Xenopus CRF-R1 (xCRF-R1). Replacement of amino acids 76-84 of hCRF-R1 with residues from the same segment of the hVIP-R2 N terminus markedly reduced the binding affinity of CRF ligands. Mutation of Arg76 or Asn81 but not Gly83 of hCRF-R1 to the corresponding amino acids of xCRF-R1 or hVIP-R2 resulted in 100-1,000-fold lower affinities for human/rat CRF, rat urocortin, and astressin. These data underline the importance of the N-terminal domain of CRF-R1 in high-affinity ligand binding.  相似文献   

8.
The measurement of interproton nuclear Overhauser enhancements (NOEs) and dihedral angle restraints of aromatic amino acids is a critical step towards determining the structure of a protein. The complete assignment of the resonances from aromatic rings and the subsequent resolution and identification of their associated NOEs, however, can be a difficult task. Shown here is a strategy for assigning the 1H, 13C, and 15N signals from the aromatic side chains of histidine, tryptophan, tyrosine, and phenylalanine using a suite of homo- and hetero-nuclear scalar and NOE correlation experiments, as well as selective deuterium isotope labelling. In addition, a comparison of NOE information obtained from homonuclear NOE spectroscopy (NOESY) and 13C-edited NOESY-heteronuclear single quantum correlation experiments indicates that high-resolution homonuclear two-dimensional NOESY spectra of selectively deuterated proteins are invaluable for obtaining distance restraints to the aromatic residues.  相似文献   

9.
10.
The adapter protein Shc has been implicated in mitogenic signaling via growth factor receptors, cytokine receptors, and antigen receptors on lymphocytes. Besides the well characterized interaction of Shc with molecules involved in Ras activation, Shc also associates with a 145-kDa tyrosine-phosphorylated protein upon triggering via antigen receptors and many cytokine receptors. This 145-kDa protein has been recently identified as an SH2 domain containing 5'-inositol phosphatase (SHIP) and has been implicated in the regulation of growth and differentiation in hematopoietic cells. In this report, we have addressed the molecular details of the interaction between Shc and SHIP in vivo. During T cell receptor signaling, tyrosine phosphorylation of SHIP and its association with Shc occurred only upon activation. We demonstrate that the phosphotyrosine binding domain of Shc is necessary and sufficient for its association with tyrosine-phosphorylated SHIP. Through site-directed mutagenesis, we have identified two tyrosines on SHIP, Tyr-917, and Tyr-1020, as the principal contact sites for the Shc-phosphotyrosine binding domain. Our data also suggest a role for the tyrosine kinase Lck in phosphorylation of SHIP. We also show that the SH2 domain of SHIP is dispensable for the Shc-SHIP interaction in vivo. These data have implications for the localization of the Shc.SHIP complex and regulation of SHIP function during T cell receptor signaling.  相似文献   

11.
A previous analysis of yeast ribosomal protein L25 implicated an evolutionarily conserved motif of seven amino acids near the C terminus (positions 120 to 126) in specific binding of the protein to domain III of 26 S rRNA. We analyzed the effect of various point mutations in this amino acid sequence on the capacity of the protein to interact in vitro with its binding site on the rRNA. Most of the mutations tested, including some conservative replacements, strongly reduced or abolished rRNA binding, further supporting a pivotal role for the motif in the specific interaction between L25 and 26 S rRNA. We have also determined the ability of the various mutant L25 species to complement in vivo for the absence of wild-type protein in cells that conditionally express the chromosomal L25 gene. Surprisingly, up to a fivefold reduction in the in vitro binding capacity of L25 is tolerated without affecting the ability of the mutant protein to support (virtually) wild-type rates of 60 S subunit formation and cell growth. Mutations that completely abolish recognition of 26 S rRNA, however, block the formation of 60 S particles, demonstrating that binding of L25 to this rRNA is an essential step in the assembly of the large ribosomal subunit. Using the same combination of approaches we identified an element, located between positions 133 and 139, that is indispensable for the ability of L25 to support a normal rate of 60 S subunit formation, but plays a relatively minor role in determining the rRNA-binding capacity of the protein. In particular, the presence of a hydrophobic amino acid at position 135 was found to be highly important. These results indicate that the element in question is crucial for a step in the assembly of the 60 S subunit subsequent to association of L25 with 26 S rRNA.  相似文献   

12.
Since the natural immune response to hepatitis C virus (HCV) is often unable to clear the infection, to enhance immunogenicity we studied substituted peptides from an HCV cytotoxic T lymphocyte (CTL) epitope (C7A2) from a conserved region of the HCV core protein (DLMGYIPLV) recognized by CTL lines from HLA-A2.1(+) HCV-infected patients and HLA-A2.1 transgenic mice. HLA-A2.1 binding, human and murine CTL recognition, and in vivo immunogenicity (using mice transgenic for human HLA-A2 in lieu of immunizing humans) were analyzed to define peptides with enhanced immunogenicity. Peptides substituted at position 1 showed enhanced HLA-A2 binding affinity, but paradoxically poorer immunogenicity. A peptide with Ala substituted at position 8 (8A) showed higher HLA-A2 binding affinity and CTL recognition and was a more potent in vivo immunogen in HLA-A2-transgenic mice, inducing higher CTL responses with higher avidity against native C7A2 than induced by C7A2 itself. These results suggest that peptide 8A is a more potent in vitro antigen and in vivo immunogen than C7A2 and may be useful as a vaccine component. They provide proof of principle that the strategy of epitope enhancement can enhance immunogenicity of a CTL epitope recognized by human CTL.  相似文献   

13.
In cats anaesthetised with pentobarbitone, the effect of inhibitors of the in vitro cellular uptake of GABA were tested on the responses of single central neurones to GABA and other depressant amino acids. (4)- AND (-)-nepecotic acid, (4)-2,4-diaminobutyric acid (DABA) and 2,2-dimethyl-beta-alanine, enhanced the action of GABA on spinal, cerebellar and cerebral cortical neurones. In the spinal cord DABA, and to a less estent (-)-nipecotic acid, enhanced the action of beta-alanine, whereas the actions of glycine and taurine were unaffected by DABA and reduced by (-)-nipecotic acid. In the cerebellum and cerebral cortex, these two substances enhanced the action of GABA, usually to a greater extent than that of beta-alanine and taurine, although this specificity was not marked. The GABA-mediated basket cell inhibition of Purkinje cells in the cerebellum was unaffected by DABA and (-)-nipecotic acid, and neither substance appears suitable for determining the role of uptake processes in the inactivation of synapitcally released GABA. Quantitatively these in vivo results agree more closely with recent vitro uptake studies in cat tissue than the previously published data on rat cerebral cortex and dorsal root ganglia, and the observations provide further evidence for the importance of cellular uptake in maintaining low extraneuronal concentrations of inhibitory amino acid transmitters.  相似文献   

14.
Tetranectin, a homotrimeric protein belonging to the family of C-type lectins and structurally highly related to corresponding regions of the mannose-binding proteins, is known specifically to bind the plasminogen kringle 4 protein domain, an interaction sensitive to lysine. Surface plasmon resonance and isothermal calorimetry binding analyses using single-residue and deletion mutant tetranectin derivatives produced in Escherichia coli showed that the kringle 4 binding site resides in the carbohydrate recognition domain and includes residues of the putative carbohydrate binding site. Furthermore, the binding analysis revealed that the interaction is sensitive to calcium in addition to lysine.  相似文献   

15.
Sequence alignment shows that there is a highly conserved aspartate in the second transmembrane helix of virtually all G protein-coupled receptors. A previous study on the alpha 2-adrenergic receptor demonstrated that substitution of this acidic residue for the corresponding amide slightly decreases the affinity of the receptor for agonists and completely abolishes the effect of Na+ on the affinity for agonists. Since we have previously shown that Na+ modulates the binding affinity of the LH/CG receptor for ovine LH (oLH) [but not for human CG (hCG)], the experiments described here were designed to determine if the corresponding residue (D383) of the rat LH/CG receptor also mediates this Na+ effect. We used site-directed mutagenesis to create an LH/CG receptor mutant in which D383 was substituted by N. The wild type and mutant receptor [designated rLHR(D383N)] were expressed in human embryonic kidney 293 cells, and the transfected cells were tested for their ability to bind hCG and oLH in medium containing Na+ or an isoosmolar concentration of an appropriate sodium substitute. The results presented here show that this single point mutation of the LH/CG receptor leads to a slight reduction in affinity for hCG and oLH but completely abolishes the effects of Na+ removal on the affinity for oLH. Thus, regardless of the presence or absence of Na+, cells expressing rLHR(D383N) bind oLH with a low affinity comparable to that of the wild type receptor assayed in the presence of Na+. We also measured the ability of hCG and oLH to increase cAMP accumulation in cells expressing the wild type and mutant receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A series of amino acid substitutions were carried out in the V3 loop of SIV gp120 to investigate their effects on binding of the envelope to CD4 and neutralizing monoclonal antibodies. Alanine replacement of two adjacent arginines at the amino terminus of V3 resulted in a molecule that bound neither sCD4 nor conformation-dependent neutralizing monoclonal KK5 and KK9. A similar substitution of two amino acids, lysine and arginine, in the carboxyl half of V3 disrupted binding to KK9 without affecting CD4 binding. Removal of V3 from the envelope gave rise to a molecule that was not secreted. These data suggest a close linkage between V3 and CD4 binding domains of gp120, although neutralizing antibodies directed to V3 do not block binding of gp120 to CD4. We propose that differences in the modes of interactions of the V3 disulfide loops with CD4 in SIV and HIV may be responsible for the observed different neutralizing properties of the two V3 loops.  相似文献   

17.
It has been indicated that amino acids have various intrinsic phi and psi propensities, as demonstrated from the comparison between experimental secondary structure propensities and their relative statistical distribution in the protein database for the appropriate region of the Ramachandran plot. However, this does not eliminate the possibility that these experimental propensities are the result of context effects due to the secondary structure environment of the mutated position. To demonstrate that there are at least real intrinsic phi propensities, independent of context effects, we have used two different nuclear magnetic resonance parameters related to the phi dihedral angle (J3 alpha HN coupling constants and the chemical shift of the C alpha H proton), determined in random-coil tetra- and pentapeptides, and/or in proteins. Comparison of the experimentally determined values for these parameters with the theoretical ones determined from the analysis by different empirical and theoretical equations of the phi dihedral angle statistical distribution of the amino acids in the protein database, supports the idea that each amino acid has, at least, different phi intrinsic propensities. Consideration of all conformations, or only coil conformations, in the protein database produces similar results. The reasonable correlation between these experimental and theoretical data and the hydrogen-exchange data in random-coil peptides suggests that maximisation of hydrophobic surface-buried and hydrogen-bond formation with the solvent could be responsible for these different random-coil conformational preferences. Analysis of the intrinsic propensities for beta-strand, alpha-helix and polyproline II dihedral angles of the 20 amino acids in coil conformations, indicates that the side-chain of the amino acids is mainly determining the relative preferences for the phi angle.  相似文献   

18.
We reviewed the literature to determine the clinical outcomes of the treatment of closed fractures of the tibial shaft with immobilization in a cast, open reduction with internal fixation, or fixation with an intramedullary rod. We reviewed 2372 reports of comparative trials and uncontrolled studies of series of patients published between 1966 and 1993. Nineteen reports, involving six controlled trials and twenty-seven groups of patients, met our inclusion criteria. A structured questionnaire was used to assess the quality of the literature in terms of the experimental design and the method of assessment of outcome. Outcomes from controlled trials were summarized with odds ratios and risk differences, and outcomes from case series were summarized by the medians of the reported results. The studies that were reviewed generally had few subjects and were poorly designed. The comparative trials showed treatment with a cast to be associated with a lower rate of superficial infection than open reduction and internal fixation (mean difference, -5.81 per cent; p = 0.02) and open reduction and internal fixation to be associated with a higher rate of union by twenty weeks than treatment with a cast (mean difference, -18.07 per cent; p = 0.008). There were no other significant associations. There were insufficient data for us to evaluate any aspect of functional status, level of pain, or other patient-reported outcomes of any of the methods of treatment. The results of the present review suggest that the data from the published literature are inadequate for decision-making with regard to the treatment of closed fractures of the tibia.  相似文献   

19.
20.
The small GTP-binding protein ADP-ribosylation factor-1 (ARF1) regulates intracellular transport by modulating the interaction of coat proteins with the Golgi complex. Coat protein association with Golgi membranes requires activated, GTP-bound ARF1, whereas GTP hydrolysis catalyzed by an ARF1-directed GTPase-activating protein (GAP) deactivates ARF1 and results in coat protein dissociation. We have recently cloned a Golgi-associated ARF GAP. Overexpression of GAP was found to result in a phenotype that reflects ARF1 deactivation (Aoe, T., Cukierman, E., Lee, A., Cassel, D., Peters, P. J., and Hsu, V. W. (1997) EMBO J. 16, 7305-7316). In this study, we used this phenotype to define domains in GAP that are required for its function in vivo. As expected, mutations in the amino-terminal part of GAP that were previously found to abolish ARF GAP catalytic activity in vitro abrogated ARF1 deactivation in vivo. Significantly, truncations at the carboxyl-terminal part of GAP that did not affect GAP catalytic activity in vitro also diminished ARF1 deactivation. Thus, a noncatalytic domain is required for GAP activity in vivo. This domain may be involved in the targeting of GAP to the Golgi membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号