首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rectangular waveguide grating slow-wave structure (SWS) with arbitrary shaped grooves is presented and analyzed in this paper. As an all-metal slow-wave circuit, it has properties that can be used in high-power millimeter-wave or sub-millimeter wave traveling wave tube (TWT). The unified dispersion equation and the expression of coupling impedance are obtained in this paper by means of an approximate field-theory analysis, in which the profile of the groove is approximately replaced by a series of steps and the field continuity at the interface of two neighboring steps together with the field matching conditions at the interface between the groove region and the interaction region are employed. A rectangular groove SWS was manufactured and the cold measurement was made. The experimental data are in good agreement with the numerical calculation. The derived transcendental equations are resolved numerically for four classical structures such as rectangular, dovetail, ladder and cosine. Finally, taking the rectangular waveguide grating SWS with rectangular grooves for example, the influences of physical dimensions on dispersion relation and coupling impedance are discussed.  相似文献   

2.
This paper focuses on a new rectangular waveguide grating Slow-Wave Structure (SWS) with cosine-shaped grooves and studies the propagation characteristics of the wave in the SWS. By using the approximate field-matching conditions, the dispersion equation and the coupling impedance of this circuit are obtained. The dispersion curves and coupling impedances of the fundamental wave are calculated and the influences of the various geometrical dimensions are discussed. The results show that the bandwidth of the cosine-shaped groove SWS is much wider than that of rectangular-shaped groove one. And reducing the groove width can broaden the frequency-band and decrease the phase-velocity, while increment of the groove-depth can also decrease phase-velocity. For above cases, the coupling impedance is more than 16Ω. The present analysis will be helpful on further study and design of the RF systems used in millimeter wave Traveling Wave Tube (TWT).  相似文献   

3.
本文采用矩形波导加载光栅的慢波结构作为太赫兹返波管的高频结构,通过理论分析和电磁仿真研究了该慢波结构的色散特性和互作用阻抗,理论分析结果和仿真结果能很好地吻合。在理论分析的基础上,设计了一个中心频率为340GHz的返波管,经粒子模拟软件计算,在较低电流密度的情况下该返波管输出功率达100mW且可调带宽约30GHz。  相似文献   

4.
A simple equivalent circuit analysis of the frame–rod slow-wave structure (SWS) on dielectric substrates of a traveling-wave tube (TWT) is developed, using the quasi-TEM approximation approach for the dispersion and coupling impedance characteristics of the structure. Moreover, the obtained complex dispersion equation and coupling impedance are numerically calculated. The calculation results by our theory method agree well with the results obtained by the 3D EM simulation software HFSS. It is shown that the dispersion of the frame–rod circuit is decreased; the phase velocity is reduced and the bandwidth becomes greater, while the coupling impedance decreases after filling the dielectric materials in the frame–rod SWS. In addition, a comparison of slow-wave characteristics of this structure with a rectangular helix counterpart is made. As a planar slow-wave structure, this structure has potential applications in compact TWTs based on the micro-fabrication technology, which could be scaled to millimeter wave, even to THz frequency.  相似文献   

5.
矩形慢波结构及其变态具有易于微加工、横向尺寸大、散热好等优点,是一种有潜力工作于毫米波段或亚毫米波段的高频系统.文中利用场匹配的方法推导出了任意槽形状开放式矩形波导慢波结构的统一色散方程,并利用数值计算方法分析了几种特殊槽形状加载慢波结构的色散特性及耦合阻抗,得到三角形结构色散和耦合阻抗均最弱,而倒梯形结构色散最强,耦合阻抗最大.  相似文献   

6.
对W波段三槽梯形线耦合腔慢波结构(包括大功率输入输出耦合器和射频窗)的加工和冷测进行了研究。此慢波结构由一个矩形波导耦合器馈电,该耦合器由放置在输入腔短边上的三阶阶梯变换矩形波导组成。首先,利用仿真方法研究了慢波结构的色散、互作用阻抗、传输特性和注-波互作用。结果表明,采用三槽梯形线耦合腔慢波结构的行波管能够在91~96 GHz的频率范围内提供大于1000 W的饱和输出功率,并且在94 GHz频点,饱和输出功率最大,可以达到1125 W。其次,采用高精度数控铣床加工出三槽梯形线慢波结构,并将其固定在非磁性不锈钢外壳中。文中给出了带有耦合器和射频窗的三槽梯形线慢波系统的测试结果,表明在90 GHz到100 GHz的频率范围内,S11<-10 dB。因此,三槽梯形线慢波结构在W波段大功率行波管方面具有应用前景。  相似文献   

7.
张开春 《电子学报》2011,39(3):632-635
本文选用矩形耦合腔作为太赫兹扩展互作用振荡器(EIO)的慢波结构,鉴于其结构的复杂性,采用等效电路方法计算其色散.详细研究了腔体和耦合槽的电路参数,计算了不同结构尺寸、圆形和矩形电子通道的0.12THz和0.225THz慢波结构的色散特性.并采用专业电磁软件,研究了不同结构参数下的色散特性、耦合阻抗和特征阻抗.通过对色...  相似文献   

8.
带状束矩形栅毫米波行波管的研究   总被引:5,自引:5,他引:0  
为了克服单模近似法(SMA)在分析矩形栅慢波系统高频特性的局限性,用“本征函数法”得到了其色散特性,进而求得耦合阻抗.并针对矩形栅的两种典型结构(浅槽栅和深槽栅)进行数值计算,分析了金属栅的几何尺寸对系统高频特性的影响.设计出3 cm、8mm波段的矩形栅模型,进行实验测量,实验值与理论值符合良好.导出了考虑电子注时的“热”色散方程,得到其小信号增益,讨论了电子注参数和慢波电路几何尺寸对小信号增益的影响,为矩形栅慢波系统行波管的设计提供了理论基础.  相似文献   

9.
Recently disk-loaded waveguide has been widely used in high-power traveling wave tubes (HPTWT). Although TM 01 mode is it's main mode, the asymmetry mode may be excited by slight asymmetry of the structure, misalignment of the beam, or the asymmetry associated with the input or output structure. So research about asymmetry mode of disk-loaded waveguide is necessary. The general dispersion equation and interaction impedance expression of disk-loaded waveguide is obtained with accurate field theory for the first time. Based on these results, a broadband and a narrowband disk-loaded waveguides are designed which can be used in the Ka band HPTWT. Moreover, the theoretical calculated results are compared with the simulated results from the HFSS (High Frequency Structure Simulator) code using finite element method. It is found that frequency domain overlapped by these two modes of the narrowband structure is very narrow, so the HEM 11 mode may be ignored when calculating Beam-wave interaction. In the other hand, the interaction impedance of HEM 11 mode is very low generally.  相似文献   

10.
The dielectric-rod is loaded on the central axis of the arbitrarily-shaped helical groove slow-wave structure. Meanwhile, the profile of the groove is replaced by a series of continuous rectangular steps. The unified dispersion equation of the arbitrarily-shaped helical groove waveguide loaded with a concentric dielectric-rod is obtained by means of a combination of filed-matching method and admittance-matching technique. Then, the effect of the change of groove shape and the dielectric-rod parameters on the dispersion and coupling impedance is approached by theory calculation. The results show that: loaded with dielectric-rod, the bandwidth of the helical groove traveling wave tube (TWT) is effectively broadened, but the coupling impedance is reduced. Among the five different groove shapes, the triangle-type groove has the widest bandwidth but the smallest coupling impedance, and the swallow-tailed-type groove has the narrowest bandwidth but the largest coupling impedance.  相似文献   

11.
以折叠波导行波管作为大功率回旋行波管的前级激励信号源,利用电磁仿真软件HFSS和粒子模拟软件(CST粒子工作室),对0.14 THz微电真空折叠波导行波管慢波结构的色散特性、耦合阻抗进行计算分析,然后对折叠波导行波管束波互作用过程进行粒子模拟,最后通过粒子模拟得到该折叠波导行波管的增益、工作电压、电流等工作特性参数。在电压为13.9 kV、电流为16 mA,输入功率为5 mW的条件下,输出功率为5 W,线性增益为30 dB,带宽3.7 GHz,最大输出功率为6.2 W,该结果为0.14 THz大功率回旋行波管实现kW量级的功率输出提供功率足够的前级馈入信号奠定了基础。  相似文献   

12.
A simple equivalent circuit model for the analysis of dispersion and interaction impedance characteristics of serpentine folded-waveguide slow-wave structure was developed by considering the straight and curved portions of structure supporting the dominant TE 10-mode of the rectangular waveguide. Expressions for the lumped capacitance and inductance per period of the slow-wave structure were derived in terms of the physical dimensions of the structure, incorporating the effects of the beam-hole in the lumped parameters. The lumped parameters were subsequently interpreted for obtaining the dispersion and interaction impedance characteristics of the structure. The analysis was simple yet accurate in predicting the dispersion and interaction impedance behaviour at millimeter-wave frequencies. The analysis was benchmarked against measurement as well as with 3D electromagnetic modeling using MAFIA for two typical slow-wave structures (one at the Ka-band and the other at the W-band) and close agreement observed.  相似文献   

13.
阶梯加载矩形波导栅慢波系统的研究   总被引:2,自引:2,他引:2  
提出了一种新型的毫米波行波管慢波结构———阶梯加载矩形波导栅慢波系统.考虑槽区内场的高次项,利用各阶梯相邻面的阶跃条件以及互作用区和加载区的场匹配条件,获得了该结构的色散方程,并导出耦合阻抗.讨论了主模在其中的传播情况,并分析了系统结构参数变化对慢波电路高频特性的影响.数值计算表明加载阶梯的尺寸对此结构内波的传播特性有很大影响,可以根据不同的要求来选取具体设计参数.该结果为进一步研究和设计此类行波管高频系统提供了理论基础.  相似文献   

14.
在0.14 THz,0.22 THz和0.34 THz折叠波导行波管研制的基础上,讨论了0.41 THz折叠波导行波管慢波结构设计与加工的可行性,分析研究了折叠波导慢波结构弯曲处直角弯曲与半圈弯曲、方形电子注通道与圆形电子注通道对色散特性、耦合阻抗、带宽、冷损耗和增益的影响。考虑了慢波结构中增加理想衰减器对该行波管带宽和增益的影响,得到了0.41 THz折叠波导行波管慢波结构的初步设计方案,为太赫兹折叠波导行波管的继续发展打下了一定基础。  相似文献   

15.
提出了易以加工的大直径波纹内导体相对论返波振荡器慢波结构,推导了这种慢波结构的冷色散方程和耦合阻抗计算公式,数值计算并详细分析了相关结构参数对TM0n模式色散曲线分离度以及TM02模式的高频场耦合阻抗的影响.结果表明:慢波结构周期、波纹深度以及电子注平均半径都对高频场耦合阻抗有影响;这种慢波结构在抑制模式竞争、以及在低引导磁场下工作等方面都有较大的优势.  相似文献   

16.
This paper presents a tapered ridge-loaded folded waveguide (FWG) slow-wave structure (SWS) for broadband and high power millimeter wave traveling wave tube (TWT). The radio-frequency characteristics including dispersion properties, interaction impedance, S-parameters are analyzed. And based upon these results, the nonlinear large signal performance of the tapered ridge-loaded folded waveguide TWT working in W-band is simulated by 3-D particle-in-cell code. In the same ridge length, the tapered FWG has lower reflection and radio-frequency loss than the normal ridge-loaded FWG. Besides, the tapered ridge-loaded FWG TWT also has higher electron efficiency and larger bandwidth, which is more suitable for millimeter-wave TWT.  相似文献   

17.
折叠波导慢波电路的传输特性   总被引:7,自引:3,他引:4  
研究了新型慢波结构折叠波导慢波电路的传输特性 ,利用等效电路法计算了折叠波导电路的色散特性、耦合阻抗和止带。分析和计算表明 ,该电路很适合用作短厘米波和毫米波大功率行波管的慢波结构。  相似文献   

18.
Measurements have been done in the millimeter wave region on a composite waveguide which comprises a dielectric rod waveguide connecting two metal rectangular waveguides. Such a waveguide has been used by us in a Josephson harmonic mixer installed in a small metal cryostat, to prevent the thermal invasion from outside environment and to transmit both signal and LO waves with small losses. The measured transmission loss, that is caused mainly by the coupling loss between metal rectangular waveguides (TE10 mode) and a dielectric rod waveguide (HE11 mode), has been less than 2dB in the frequency range of 52–104 GHz.  相似文献   

19.
A multilevel grating coupler based on silicon-on-insulator (SOI) material structure is proposed to realize the coupling between waveguide and waveguide or waveguide and fiber. This coupler is compatible with the current fabrication facilities for complementary metal oxide semiconductor (CMOS) technology with vertical coupling. This structure can realize coupling when the beams with transverse electric (TE) polarization and transverse magnetic (TM) polarization are incident at the same time. The influences of the grating coupler parameters including wavelength, the thickness of waveguide layer, the thickness of SiO2 layer and the number of steps on the TE mode and TM mode coupling efficiencies are discussed. Theory researches and simulation results indicate that the wavelength range is from 1533 nm to 1580 nm when the TE mode and TM mode coupling efficiencies are both more than 40% as the grating period is 0.99 μm. The coupling efficiencies of the incident TE and TM modes are 49.9% and 49.5% at the wavelength of 1565 nm, respectively, and the difference between them is only 0.4%.  相似文献   

20.
The modal properties of planar multilayered waveguides with a rectangular surface corrugation are investigated. A rigorous full Floquet numerical analysis is performed for the fundamental TE mode of the infinite periodic structure. The algorithm is based on a boundary element solution of the integral wave equation in the grating region. A generalized transverse resonance-type matrix equation is sought that matches all continuity, periodicity, and boundary conditions. The resonant solutions of this characteristic equation represent all the surface and leaky waves supported by the structure. The exact dispersion characteristics, as well as the amplitudes of the space harmonics are computed and discussed in connection with radiation losses and coupling mechanisms near resonant Bragg conditions. In particular, a specific double-heterostructure GaAs/AlGaAs waveguide geometry is examined in detail  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号