首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper has proposed a robust control for the spacecraft rendezvous system by considering the parameter uncertainties and actuator unsymmetrical saturation based on the discrete gain scheduling approach. By changing of variables, we transform the actuator unsymmetrical saturation control problem into a symmetrical one. The main advantage of the proposed method is improving the dynamic performance of the closed-loop system with a region of attraction as large as possible. By the Lyapunov approach and the scheduling technology, the existence conditions for the admissible controller are formulated in the form of linear matrix inequalities. The numerical simulation illustrates the effectiveness of the proposed method.  相似文献   

2.
The problem of robust global stabilization of a spacecraft circular orbit rendezvous system with input saturation and inputadditive uncertainties is studied in this paper. The relative models with saturation nonlinearity are established based on Clohessey-Wiltshire equation. Considering the advantages of the recently developed parametric Lyapunov equation-based low gain feedback design method and an existing high gain scheduling technique, a new robust gain scheduling controller is proposed to solve the robust global stabilization problem. To apply the proposed gain scheduling approaches, only a scalar nonlinear equation is required to be solved. Different from the controller design, simulations have been carried out directly on the nonlinear model of the spacecraft rendezvous operation instead of a linearized one. The effectiveness of the proposed approach is shown.  相似文献   

3.
International Journal of Control, Automation and Systems - This paper has proposed a discrete gain scheduling output tracking control method for the homing phase of the spacecraft rendezvous based...  相似文献   

4.
赵琴  段广仁 《控制理论与应用》2018,35(10):1503-1510
针对航天器交会问题存在外部干扰和输入饱和的情况, 本文提出了一个输出反馈跟踪控制器. 仅利用测量得到的相对位置信息, 设计了一个滑模观测器用来估计相对角速度, 并根据该估计值设计了一个鲁棒反步控制律. 通过引入一个辅助系统, 对输入饱和情况进行了分析. 采用Lyapunov 稳定性理论, 证明了本文提出的该控制器能够保证位置和速度跟踪误差的一致有界性. 最后通过数值分析验证了所设计的输出反馈控制器的有效性.  相似文献   

5.
ABSTRACT

This paper presents a gain scheduling approach for achieving the consensus tracking of multi-agent systems with actuator saturation. We first construct a series of nesting ellipsoid invariant sets associated with consensus errors. When the consensus errors stay between the two ellipsoid invariant sets, the feedback gains keep constant, but when the consensus errors enter into the smaller ellipsoid invariant set, the feedback gains abruptly become larger. By combining this gain scheduling technique and the parametric Lyapunov equations, we, respectively, design state and output feedback gain scheduling protocols. Their main advantage, in comparison with the fixed case, is that the convergence rate of consensus tracking can be enhanced by scheduling the gain parameters. Numerical simulations verify the effectiveness of theoretical analysis.  相似文献   

6.
This paper addresses the problem of robust control for a class of multiple equilibrium switched systems with actuator saturation and parameter uncertainties. The parameter uncertainties are described in norm‐bounded form. By combining the parametric Lyapunov equation approach and the gain‐scheduling technique, stabilization conditions are established in terms of linear matrix inequalities. State‐feedback controllers can be designed to guarantee the robust stability and performance of the closed‐loop system in the presence of parameter uncertainties and actuator saturation. The proposed method is to increase the convergence rate during the convergence of the states. Numerical examples and simulations are worked out to illustrate the feasibility of the proposed results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we study the problem of disturbance attenuation by output feedback for linear systems subject to actuator saturation. A nonlinear output feedback, expressed in the form of a quasi‐linear parameter‐varying system with state‐dependent scheduling parameter, is constructed that leads to the attenuation of the effect of the disturbance on the output of the system. The level of disturbance attenuation is measured in terms of the restricted ℒ︁2 gain and the restricted ℒ︁2–ℒ︁ gain over a class of bounded disturbances. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
针对欠驱动TORA(Translational oscillations with a rotational actuator)系统,设计了一种具有执行器饱和约束的输出反馈等[7]特别地,由Rand学者提出的TORA系统,最初控制器.与其他现有方法相比,本文方法不仅考虑了执行器饱和约束和作为双自旋航天器的简化模型用于研究自振现象.后来由于速度信号不可测情形,而且考虑了旋转小球可能存在的循环行为.具体而TORA系统具有强耦合、高度非线性、欠驱动等特性,而被言,首先根据TORA系统模型分析了TORA系统的控制目标;随后,作为一种非线性基准系统主要用于非线性控制器设计、验证构造了一种新颖的能量函数,在此基础上设计了一种考虑执行器饱和约非线性控制算法的控制性能或教学研究.目前国内外已有多束的输出反馈控制器,并通过严格的数学分析证明了闭环系统关于平衡点的稳定性;最后,借助数值仿真测试检验了所提控制器的控制性能,并所高校和研究机构针对TORA系统的控制问题展开研究.对与已有方法进行了对比.仿真测试结果表明本文所提方法具有更好的控法制性能.  相似文献   

9.
In this paper, a set invariance analysis and gain scheduling control design approach is proposed for the polytopic linear parameter-varying systems subject to actuator saturation. A set invariance condition is first established. By utilizing this set invariance condition, the design of a time-invariant state feedback law is formulated and solved as an optimization problem with LMI constraints. A gain-scheduling controller is then designed to further improve the closed-loop performance. Numerical examples are presented to demonstrate the effectiveness of the proposed analysis and design method.  相似文献   

10.
Takagi-Sugeno (TS) fuzzy models can provide an effective representation of complex nonlinear systems in terms of fuzzy sets and fuzzy reasoning applied to a set of linear input-output submodels. In this paper, the TS fuzzy modeling approach is utilized to carry out the stability analysis and control design for nonlinear systems with actuator saturation. The TS fuzzy representation of a nonlinear system subject to actuator saturation is presented. In our TS fuzzy representation, the modeling error is also captured by norm-bounded uncertainties. A set invariance condition for the system in the TS fuzzy representation is first established. Based on this set invariance condition, the problem of estimating the domain of attraction of a TS fuzzy system under a constant state feedback law is formulated and solved as a linear matrix inequality (LMI) optimization problem. By viewing the state feedback gain as an extra free parameter in the LMI optimization problem, we arrive at a method for designing state feedback gain that maximizes the domain of attraction. A fuzzy scheduling control design method is also introduced to further enlarge the domain of attraction. An inverted pendulum is used to show the effectiveness of the proposed fuzzy controller.  相似文献   

11.
In this research, a novel extension of the passivity‐based output feedback trajectory tracking controller is developed for internally damped Euler‐Lagrange systems with input saturation. Compared with the previous output feedback controllers, this new design of a combined adaptive controller‐observer system will reduce the risk of actuator saturation effectively via generalized saturation functions. Semi‐global uniform ultimate boundedness stability of the tracking errors and state estimation errors is guaranteed by Lyapunov stability analysis. An application of the proposed saturated output feedback controller is the stabilization of a nonholonomic wheeled mobile robot with saturated actuators towards desired trajectories. Simulation results are provided to illustrate the efficiency of the proposed controller in dealing with the actuator saturation.  相似文献   

12.
In this paper, we propose a model‐free algorithm for global stabilization of linear systems subject to actuator saturation. The idea of gain‐scheduled low gain feedback is applied to develop control laws that avoid saturation and achieve global stabilization. To design these control laws, we employ the framework of parameterized algebraic Riccati equations (AREs). Reinforcement learning techniques are developed to find the solution of the parameterized ARE without requiring any knowledge of the system dynamics. In particular, we present an iterative Q‐learning scheme that searches for a low gain parameter and iteratively solves the parameterized ARE using the Bellman equation. Both state feedback and output feedback algorithms are developed. It is shown that the proposed scheme achieves model‐free global stabilization under bounded controls and convergence to the optimal solution of the ARE is achieved. Simulation results are presented that confirm the effectiveness of the proposed method.  相似文献   

13.
The problem of robust global stabilization of linear systems subject to input saturation and input‐additive uncertainties is revisited in this paper. By taking advantages of the recently developed parametric Lyapunov equation‐based low gain feedback design method and an existing dynamic gain scheduling technique, a new gain scheduling controller is proposed to solve the problem. In comparison with the existing ?2‐type gain scheduling controller, which requires the online solution of a state‐dependent nonlinear optimization problem and a state‐dependent ?2 algebraic Riccati equation (ARE), all the parameters in the proposed controller are determined a priori. In the absence of the input‐additive uncertainties, the proposed controller also partially recovers Teel's ?‐type scheduling approach by solving the problem of global stabilization of linear systems with actuator saturation. The ?‐type scheduling approach achieves robustness not only with non‐input‐additive uncertainties but also requires the closed‐form solution to an ? ARE. Thus, the proposed scheduling method also addresses the implementation issues of the ?‐type scheduling approach in the absence of non‐input‐additive uncertainties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
This paper is concerned with the problem of state feedback control for nonlinear quadratic systems with randomly occurring actuator saturation. The considered actuator saturation is assumed to occur in a random way, and the randomly occurring rates of the saturation are time-varying with known upper and lower bounds. By using the Lyapunov approach, a sufficient condition is given to guarantee that the closed-loop system is locally asymptotically stable in mean-square sense. The desired controller gain can be obtained in terms of the solutions to certain linear matrix inequalities. Finally, a simulation example is provided to show the effectiveness of the proposed control scheme.  相似文献   

15.
This paper considers the design of output feedback control for a type of quasi-linear second-order systems with the time-varying coefficient matrices containing the state variables and a time-varying parameter vector. Based on the solution to a type of second-order generalised Sylvester matrix equations, general complete parameterisation of a quasi-linear output feedback controller is established with respect to the state variables, the time-varying parameter vector, the constant closed-loop system and another two groups of arbitrary parameters, and also for the left and right closed-loop eigenvectors matrices. With the proposed parametric output feedback control, the closed-loop system can be transformed into a constant linear system with desired eigenstructure. Finally, simulation results are provided to illustrate the convenience and effectiveness of application in the general spacecraft rendezvous problem.  相似文献   

16.
In this paper, an adaptive fuzzy state feedback control method is proposed for the single-link robotic manipulator system. The considered system contains unknown nonlinear function and actuator saturation. Fuzzy logic systems (FLSs) and a smooth function are used to approximate the unknown nonlinearities and the actuator saturation, respectively. By combining the command-filter technique with the backstepping design algorithm, a novel adaptive fuzzy tracking backstepping control method is developed. It is proved that the adaptive fuzzy control scheme can guarantee that all the variables in the closed-loop system are bounded, and the system output can track the given reference signal as close as possible. Simulation results are provided to illustrate the effectiveness of the proposed approach.   相似文献   

17.
王茜  周彬  段广仁 《自动化学报》2014,40(2):208-218
基于参量Lyapunov方法和不变集理论,针对具有输入饱和非线性约束的线性系统,提出了一种离散增益调度控制方法. 通过逐渐 增大代表闭环系统收敛速率参数的值,所提出的离散增益调度控制方法逐步加快闭环系统的收敛速度,达到改善闭环系统 动态性能的目的. 如果开环系统是非指数不稳定的,则所提出的离散增益调度控制器可实现半全局镇定;反之可实现局部镇定,并均可保证闭环系统的指数稳定性. 最后,将 所提出的方法应用于空间合作目标在轨交会控制系统的控制器设计,并直接在原始非线 性系统模型上进行仿真,结果验证了所提方法的有效性.  相似文献   

18.
In this paper, a distributed output feedback model predictive control (OFMPC) algorithm is presented for the polytopic uncertain system subject to randomly occurring actuator saturation and packet loss. Compared with the intensively applied state feedback control in MPC, the OFMPC is more feasible to the real world because the system states are often unmeasurable. With taking both actuator saturation and packet loss into account, the presented OFMPC algorithm is more practical. Moreover, by splitting the controller inputs into two independent parts, the presented dynamic output feedback control (DOFC) strategy provides more freedom to the controller design. With the global system decomposed into some subsystems, the computation complexity is reduced, thus the online designing time can be saved. By defining the estimation error function and forming an augmented system to handle the DOFC and by transforming the nonlinear feedback law into a convex hull of linear feedback laws, the distributed controllers are obtained by solving a linear matrix inequality (LMI) optimization problem. Finally, some simulation examples are employed to show the effectiveness of the techniques proposed in this paper. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
This paper proposes a method for designing robust H?? static output feedback stabilization of Takagi-Sugeno (T-S) fuzzy systems under actuator saturation. In this paper, the input saturation is represented by a polytopic model and the modeling error is assumed a norm-bounded uncertainty. A set invariance condition for robust H?? static output feedback system under actuator saturation is first established. Then, the estimation of the largest domain of attraction for the system is formulated and solved as a Linear Matrix Inequality (LMI) optimization problem. Two examples are used to demonstrate the effectiveness of the proposed design method.  相似文献   

20.
针对输入受限的多自由度机械臂高精度位置控制问题,本文充分考虑驱动器饱和非线性的影响,提出了多自由度机械臂输出反馈饱和有限时间比例–微分(PD)+同步位置控制策略,应用Lyapunov稳定性理论和几何齐次性技术证明了闭环系统的全局有限时间稳定性.非线性饱和函数的恰当引入,使得所提出的控制器具有清晰明确的上界,可以通过预先选择满足特定条件的控制器参数有效避免驱动器饱和问题;同步控制项的恰当引入,使得所提出的控制器兼顾了多自由度机械臂各轴间的同步协调性,从而获得更快的收敛速度和更好的系统整体性能,满足工程实际对机械臂的高精度要求.本文的数值仿真结果验证了所提出的控制方法的有效性和可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号