首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
以仲钼酸铵为反应物,采用熔盐法在低密度C/C复合材料孔隙表面制备Mo2C涂层,改善Cu与C/C坯体的润湿性,然后通过无压熔渗Cu制备C/C-Cu复合材料,研究了Mo2C改性层制备温度对Mo2C涂层和C/C-Cu复合材料组织结构及性能的影响。结果表明:Mo2C涂层在坯体内部孔隙表面分布均匀,且与炭基体和Cu均有良好的界面结合。在950~1150℃范围内,随涂层反应温度的提高,Mo2C层厚度由2.0μm逐渐增大到6.5μm,C/C-Cu复合材料的密度逐渐增大,电阻率逐渐降低;抗弯强度呈现先增大后减小趋势,在涂层反应温度为1000℃时呈现最大值251.83 MPa。复合材料的摩擦因数均随磨损时间延长先增大后减小并趋于稳定。随着Mo2C涂层制备温度的提高,复合材料的摩擦因数逐渐增大,体积磨损率先减小后增加,在Mo2C涂层反应温度为1000℃时,复合材料的磨损率最低。  相似文献   

2.
分别采用熔渗硅(MSI)、前驱体裂解(PIP)技术制备4种C/C-SiC复合材料.在M2000型实验机上测试材料的摩擦磨损特性.结果表明:采用MSI制备的2种C/C-SiC摩擦因数高、不稳定,摩擦因数在0.404-0.906之间波动;随载荷增加,MSI-SiC质量分数为40.9%的材料B的摩擦因数变化幅度低于SiC质量分数18.9%的材料A的摩擦因数,但其随时间延长的波动幅度大;随时间延长和载荷增加,采用PIP制备的2种C/C-SiC材料的摩擦因数变化小,在0.08-0.14之间波动;其中,随载荷增加,PIP-SiC质量分数为18.0%的材料C的摩擦因数波动幅度稍大于SiC质量分数为6.0%的材料D的.EDAX分析表明:材料A的部分磨损表面未发现碳元素;而材料C磨损表面的碳硅摩尔比大于1,使其有足够的炭形成自润滑膜,从而降低材料的摩擦因数.SEM形貌表明:MSI技术制备的材料摩擦表而粗糙,未形成完整的摩擦膜,而采用PIP技术制备的材料摩擦表面较完整且致密.  相似文献   

3.
结构类似的炭材料和C/C复合材料的滑动摩擦磨损行为   总被引:1,自引:1,他引:0  
制备粗糙层热解炭(RL)和光滑层热解炭(SL)基体的C/C复合材料,测试该C/C复合材料与40Cr钢配副时的摩擦磨损行为,并对磨损表面进行SEM观察.对比研究高强石墨和光滑层结构的块状热解炭在相同条件下的滑动摩擦磨损行为.结果表明:PAN炭纤维改善C/C复合材料的摩擦磨损行为;在实验载荷范围内,与高强度石墨材料相比,含RL炭C/C复合材料的摩擦因数降低0.08~0.12;体积磨损量增幅降低;与热解炭试样相比,具有SL炭C/C复合材料的摩擦因数降低0.02~0.05,体积磨损量低0.2 mm~3左右;随着时间的延长,大部分C/C复合材料的摩擦因数基本相对稳定或呈小幅下降,而石墨、热解炭块的摩擦因数均呈不同幅度的上升;具有RL炭的C/C复合材料摩擦表面膜厚度随载荷增加而降低,具有SL炭的C/C复合材料摩擦表面较粗糙;高强石墨能形成较完整致密的摩擦膜,但磨粒磨损严重,磨屑易在摩擦膜边缘形成层状堆积;热解炭块摩擦表面磨屑堆积松散,有较多的孔洞以及热解炭层整体剥落的形貌.  相似文献   

4.
C/C-Cu复合材料的组织和摩擦磨损性能   总被引:5,自引:1,他引:5  
以炭纤维针刺整体毡为预制体,用化学气相渗透(CVI)、浸渍/炭化(I/C)的方法制备密度和基体炭不同的C/C多孔坯体,采用真空熔渗将熔融Cu渗入到C/C坯体中制备C/C-Cu复合材料,利用X射线衍射、金相显微镜和扫描电镜分析复合材料的组织结构,研究复合材料的摩擦磨损性能。结果表明:Cu成功地渗入C/C坯体中,并填充了坯体的孔洞和炭纤维之间的孔隙,复合材料的主要相为Cu、C及少量的TiC相,当渗剂中Ti的质量分数达到15%时,出现微量的Cu和Ti的金属化合物相;复合材料的摩擦因数随着摩擦时间的增加而逐渐增加并趋于稳定。渗剂相同时,摩擦因数和体积磨损量随着材料密度增加而增加;坯体相同时,随着渗剂中Ti含量增加,摩擦因数增加,体积磨损减小。随着外加载荷的增加,摩擦因数和体积磨损先增后减,80N载荷时均达到最大值;与J204电刷对比,同样条件下,两者摩擦因数接近,但C/C-Cu复合材料的体积磨损量远远小于J204电刷的。  相似文献   

5.
不同热处理温度下炭/炭复合材料的制动摩擦性能   总被引:11,自引:4,他引:11  
在MM - 10 0 0摩擦试验机上 ,对一种针刺毡结构的炭 /炭 (C/C)复合材料在不同热处理温度下的摩擦磨损性能进行了测试 ,并对摩擦表面进行了光学形貌观察 ;采用X射线衍射技术测试了其在不同热处理温度下的石墨化度 ,并对石墨化度与材料的摩擦性能之间的关系进行了探讨。结果表明 :随着热处理温度升高 ,针刺毡结构的炭 /炭复合材料的石墨化度提高 ,摩擦磨损性能也相应发生变化 ,即摩擦因数开始随热处理温度升高而增大 ,到 2 30 0℃时出现峰值 ,线性磨损和质量磨损则在 2 2 0 0℃时出现峰值 ,氧化磨损则随热处理温度升高而下降。石墨化度对材料的摩擦磨损性能有一定影响 ,合理控制石墨化度可以得到理想性能的材料 ,对本研究所用的C/C复合材料其最佳的热处理温度为 2 30 0℃。  相似文献   

6.
目的为了降低C/C复合材料制造成本,扩展C/C复合材料应用领域,选用低成本预氧丝纤维取代碳纤维,制备出C/C复合材料,并研究纤维种类对C/C复合材料摩擦磨损性能的影响。方法以两种纤维为原材料,采用CVI工艺制备出C/C复合材料,用MM-2000摩擦试验机进行摩擦磨损试验,采用扫描电镜对摩擦面进行形貌分析。结果随着载荷的增大,预氧丝基C/C复合材料在与金属摩擦时摩擦因数保持在0.22左右,平均磨损量为0.82 mg/min,而碳纤维基C/C复合材料与金属配副相对摩擦因数较小(0.15~0.20),平均磨损量为1.17 mg/min。三种碳与碳配副中,预氧丝基C/C复合材料同预氧丝基C/C复合材料配副之间的摩擦因数随载荷波动的范围为0.28~0.33,较稳定,平均磨损量为1.76mg/min。碳纤维基复合材料与碳纤维复合材料配副时,随着载荷的增大,摩擦因数变化范围较大(0.15~0.33),平均磨损量为2.35 mg/min。预氧丝基复合材料与碳纤维基复合材料之间相互配副,其磨损最大,平均磨损量为2.95 mg/min。结论 C/C复合材料的摩擦磨损性能与纤维种类有很大关系,采用预氧丝纤维制备出的C/C复合材料,无论与金属相互摩擦,还是与自身材料摩擦,均易形成较为稳定的润滑膜。随着载荷的增加,摩擦因数变化较小,磨损量和摩擦功也最低,表现出比碳纤维基C/C复合材料更优异的摩擦性能。  相似文献   

7.
研究MoS_2含量对纯铜的显微组织、密度、硬度和耐磨性能的影响。采用纯铜粉和MoS_2粉末,通过机械球磨和热压法,制备含0~10%(质量分数)MoS_2颗粒的铜基复合材料。在干滑动摩擦条件下,采用销-盘式磨损实验装置,测试材料的耐磨性能,固定滑动速率为0.2 m/s。硬度测试结果显示,MoS_2含量为2.5%的复合材料的硬度达到峰值。当载荷一定时,Cu/2.5MoS_2复合材料具有最低的摩擦因数和磨损量。当载荷从1 N增加到4 N,不同含量增强相复合材料的摩擦因数均减小,同时,磨损量增大。磨损表面和磨屑的SEM照片显示,Cu/MoS_2复合材料的磨损机理由纯铜的粘着磨损为主转变为磨粒磨损和剥层磨损相结合的机制。  相似文献   

8.
载荷对钢基自生复合材料高速磨损性能的影响   总被引:1,自引:1,他引:0  
采用铸造的方法制备了钢基自生复合材料,并通过MMS-1G高速销盘摩擦磨损试验机、扫描电镜和能谱仪,研究了钢基自生复合材料的微观组织和载荷对该复合材料高速磨损性能的影响.结果表明,制备的复合材料中自生碳化物颗粒细小、圆整、分布均匀,自生碳化物体积分数可达到31%左右.在40m/s的滑动速度下,钢基自生复合材料的磨损率随载荷的提高而增大,当载荷从50N增加至150N时,该复合材料的磨损率也由0.99×10-6g/m增加到4.2×10-6g/m,复合材料的摩擦因数则随载荷增加而降低.对自生复合材料的磨损机理进行了探讨.  相似文献   

9.
以h-BN、石墨、短切PAN炭纤维和酚醛树脂为原料,采用单向模压结合呋喃树脂浸渍炭化技术制备C/C-BN复合材料。在M2000型实验机上测试不同取向的C/C-BN试样与表面镀Cr的40Cr钢配副时的摩擦磨损行为。结果表明:在平行于压制方向的试样(试样1)中,抗压强度达82.43 MPa,高于垂直于压制方向试样(试样2)的(51.47MPa)。摩擦实验结果表明:随载荷增加,试样1、试样2的摩擦因数均先增加后降低,试样1的摩擦因数在120 N时达到峰值0.157,而试样2在100 N时达到峰值0.152;随载荷增加,试样1的体积磨损除150 N外,基本为增加态势,最高达2.07 cm3;而试样2的体积磨损则呈现三段式增加趋势,最高值为1.66 cm3。SEM形貌表明,在实验后,试样1的摩擦膜更完整、致密。其中,在60 N时,试样1的摩擦膜表层因粘着发生卷曲撕裂,而试样2则形成了网络状裂纹。  相似文献   

10.
通过对回收的废旧复合辊环材料进行重熔和离心铸造,制备了由耐磨WCp颗粒增强的复合层与Fe-C合金基体组成的再生复合材料辊环,并采用MMS-1G高速销-盘摩擦磨损试验机、扫描电镜(SEM),研究了在100、150和200 N载荷下滑动速度对再生复合辊环的摩擦性能的影响.结果表明,在100、150和200 N载荷条件下,随滑动速度的增加,再生复合辊环的磨损率均出现幅度很小的波动现象,而摩擦因数先降低后缓慢增加.在相同滑动速度条件下,磨损率明显随载荷的增加而增大,而摩擦因数随载荷的增加而降低.再生复合辊环在低速条件下的磨损机理主要为犁沟磨损和塑性变形,而当滑动速度较高时,表现为粘着磨损、氧化磨损和磨粒磨损.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号