首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly conducting and transparent thin films of tungsten-doped ZnO (ZnO:W) were prepared on glass substrates by direct current (DC) magnetron sputtering at low temperature. The effect of film thickness on the structural, electrical and optical properties of ZnO:W films was investigated. All the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. The electrical resistivity first decreases with film thickness, and then increases with further increase in film thickness. The lowest resistivity achieved was 6.97 × 10−4 Ω cm for a thickness of 332 nm with a Hall mobility of 6.7 cm2 V−1 s−1 and a carrier concentration of 1.35 × 1021 cm−3. However, the average transmittance of the films does not change much with an increase in film thickness, and all the deposited films show a high transmittance of approximately 90% in the visible range.  相似文献   

2.
A series of ZnO films of different thickness have been deposited on glass substrates using sol-gel technique by varying the number of spin coatings and the effect of film thickness on the structural, electrical and optical properties have been investigated. The XRD results indicate that the full width at half maximum (FWHM) of the (0 0 2) diffraction peak and the strain along c-axis are decreased as the film is grown up to a thickness of 300 nm. Above 300 nm, the strain again becomes appreciable. The surface morphology shows that the grains become more uniform and bigger in size as the film thickness increases. Electrical result shows that although ZnO film with thickness of around 260 nm has the highest resistivity but is better for current conduction. The excitonic nature in the absorption spectrum becomes prominent for a film with thickness of around 260 nm. The band gap increases and then decreases as the film grows thicker.  相似文献   

3.
ZnO thin films have been grown by radio frequency (RF) magnetron sputtering on different substrates such as glass, quartz (z-cut), sapphire (0 0 1) and Si (1 0 0) in order to study the effect of substrate-induced strain along c-axis on the structural, electrical, optical and photoconducting properties of the films. The full width at half maximum for (0 0 0 2) peak increases while the crystallite size decreases with decrease in the compressive strain. The change in resistivity and carrier concentration has been related to the variation of strain. The resistivity of the films increases and the carrier concentration decreases exponentially with increasing the strain. The film on the quartz substrate shows higher UV emission intensity. The ultraviolet photosensitivity decreases with increase in the strain.  相似文献   

4.
Correlation between structural and electrical properties of ZnO thin films   总被引:1,自引:0,他引:1  
Thin ZnO films were deposited by radio frequency (r.f.) and direct current (d.c.) magnetron sputtering techniques onto glass substrates. Microstructural and electrical properties of ZnO films were studied using X-ray diffractometer (XRD), scanning electron microscope (SEM) and resistivity measurements. It was found that the size of the crystallites in the d.c. deposited films increased with increasing film thickness, while the crystallite size of r.f. deposited films remained unchanged. The d.c. deposited grains also had much stronger orientation related to the substrate than the r.f. films. XRD data indicated that the thin films with d<350 nm for r.f. and <750 nm for d.c. films have a very high degree of ZnO nonstoichiometry. This agreed well with the conductivity measurements and R(T) behaviour of the films with different resistance R. It was also found that the electrical resistivity of the samples increased exponentially with the thickness of films.  相似文献   

5.
Zinc oxide (ZnO) thin films were deposited on soda lime glass substrates by pulsed laser deposition (PLD) in an oxygen-reactive atmosphere. The structural, optical, and electrical properties of the as-prepared thin films were studied in dependence of substrate temperature and oxygen pressure. High quality polycrystalline ZnO films with hexagonal wurtzite structure were deposited at substrate temperatures of 100 and 300 °C. The RMS roughness of the deposited oxide films was found to be in the range 2-9 nm and was only slightly dependent on substrate temperature and oxygen pressure. Electrical measurements indicated a decrease of film resistivity with the increase of substrate temperature and the decrease of oxygen pressure. The ZnO films exhibited high transmittance of 90% and their energy band gap and thickness were in the range 3.26-3.30 eV and 256-627 nm, respectively.  相似文献   

6.
The effect of the spatial relationship between the arc plasma flow and the substrate surface on the resulting film thickness and electrical properties is investigated in transparent conducting Ga-doped ZnO (GZO) thin films deposited by a vacuum arc plasma evaporation (VAPE) method. It was found that the resulting electrical properties of GZO thin films produced by a VAPE deposition on a fixed substrate were considerably dependent on both the film thickness and the location on the substrate surface, extending from the area nearest the arc plasma source to that at the opposite end of the substrate in a direction parallel to the arc plasma flow; with GZO thin films deposited with various thicknesses in the range from 20 to 200 nm, the films exhibited a thickness dependence of resistivity that was considerably affected by the location on the substrate surface. The variation of resistivity relative to the location on the substrate surface was related to that of carrier concentration, which is mainly attributed to the distribution of the amount of oxygen reaching the substrate surface. In GZO thin films deposited with a thickness of 30-40 nm at a substrate temperature of 250 °C, a resistivity as low as 4 × 10− 4 Ω cm was obtained in the area of the substrate nearest the arc plasma source.  相似文献   

7.
Ga-doped zinc oxide (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. The influence of substrate temperature on the structural, electrical, and optical properties of ZnO:Ga films was investigated. The X-ray diffraction (XRD) studies show that higher temperature helps to promote Ga substitution more easily. The film deposited at 350 °C has the optimal crystal quality. The morphology of the films is strongly related to the substrate temperature. The film deposited is dense and flat with a columnar structure in the cross-section morphology. The transmittance of the ZnO:Ga thin films is over 90%. The lowest resistivity of the ZnO:Ga film is 4.48×10−4 Ω cm, for a film which was deposited at the substrate temperature of 300 °C.  相似文献   

8.
Jung-Min Kim 《Thin solid films》2010,518(20):5860-1267
100 nm Al-doped ZnO (AZO) thin films were deposited on polyethylene naphthalate (PEN) substrates with radio frequency magnetron sputtering using 2 wt.% Al-doped ZnO target at various deposition conditions including sputtering power, target to substrate distance, working pressure and substrate temperature. When the sputtering power, target to substrate distance and working pressure were decreased, the resistivity was decreased due to the improvement of crystallinity with larger grain size. As the substrate temperature was increased from 25 to 120 °C, AZO films showed lower electrical resistivity and better optical transmittance due to the significant improvement of the crystallinity. 2 wt.% Al-doped ZnO films deposited on glass and PEN substrates at sputtering power of 25 W, target to substrate distance of 6.8 cm, working pressure of 0.4 Pa and substrate temperature of 120 °C showed the lowest resistivity (5.12 × 10− 3 Ω cm on PEN substrate, 3.85 × 10− 3 Ω cm on glass substrate) and high average transmittance (> 90% in both substrates). AZO films deposited on PEN substrate showed similar electrical and optical properties like AZO films deposited on glass substrates.  相似文献   

9.
Conductive ruthenium oxide (RuO2) thin films have been deposited at different substrate temperatures on various substrates by radio-frequency (rf) magnetron sputtering and were later annealed at different temperatures. The thickness of the films ranges from 50 to 700 nm. Films deposited at higher temperatures show larger grain size (about 140 nm) with (200) preferred orientation. Films deposited at lower substrate temperature have smaller grains (about 55 nm) with (110) preferred orientation. The electrical resistivity decreases slightly with increasing film thickness but is more influenced by the deposition and annealing temperature. Maximum resistivity is 861 μΩ cm, observed for films deposited at room temperature on glass substrates. Minimum resistivity is 40 μΩ cm observed for a thin film (50 nm) deposited at 540°C on a quartz substrate. Micro-Raman investigations indicate that strain-free well-crystallized thin films are deposited on oxidized Si substrates.  相似文献   

10.
Aluminum-doped zinc oxide thin films (ZnO:Al) were deposited on sodocalcic glass substrates by the chemical spray technique, using zinc acetate and aluminum pentanedionate as precursors. The effect of the [Al/Zn] ratio in the starting solution, as well as the substrate temperature, on the physical characteristic of ZnO:Al thin films was analyzed. We have found that the addition of Al to the starting solution decreases the electrical resistivity of the films until a minimum value, located between 2 and 3 at.%; a further increase in the [Al/Zn] ratio leads to an increase in the resistivity. A similar resistivity tendency with the substrate temperature was encountered, namely, as the substrate temperature is increased, a minimum value of around 475 °C in almost all the cases, was obtained. At higher deposition temperatures the film resistivity suffers an increase. After a vacuum-thermal treatment, performed at 400 °C for 1 h, the films showed a resistivity decrease about one order of magnitude, reaching a minimum value, for the films deposited at 475 °C, of 4.3 × 10− 3 Ω cm.The film morphology is strongly affected by the [Al/Zn] ratio in the starting solution. X-ray analysis shows a (002) preferential growth in all the films. As the substrate temperature increases it is observed a slight increase in the transmittance as well as a shift in the band gap of the ZnO:Al thin films.  相似文献   

11.
Zinc oxide (ZnO) is a useful material in the fabrication of many electronic devices because of its wide band-gap, excellent transparency and high electron mobility. Thin films of ZnO have been fabricated where an alcosol solution containing 7 wt.% ZnO nano-particles was synthesized and subjected to controlled flow through a metal capillary exposed to an electric field at the ambient temperature to generate an electrohydrodynamic jet, which subsequently disintegrated into droplets thereby depositing a uniform thin film of zinc oxide on the glass substrates with an average thickness of 115 nm at a constant substrate speed of 0.25 mm/s. Pure and perfectly uniform transparent films with an average transmittance of 88% have been deposited with wurtzite crystal structure and an electrical resistivity of approximately 64 Ω.cm.  相似文献   

12.
《Materials Letters》2006,60(13-14):1594-1598
The effect of both the molar concentration of the starting solution and the substrate temperature on the electrical, morphological, structural and optical properties of chemically sprayed fluorine-doped zinc oxide (ZnO:F) thin films deposited on glass substrates is analyzed in this work. All the starting solutions employed were aged for 10 days before the deposition. The results show that as the molar concentration increases, a decrease in the electrical resistivity values is obtained, reaching the minimum resistivity in films ZnO:F deposited from a 0.4 M solution at 500 °C. A further increase in the molar concentration leads to a very slight increase in the resistivity. On the other hand, as the substrate temperature is increased, the resistivity decreases and a tendency towards to minimum value is evidenced; taking the molar concentration as parameter, minimum values are reached at 500 °C. The obtaining of ZnO:F thin films, with a resistivity as low as 7.8 × 10 3 Ω cm (sheet resistance of 130 Ω/□ and film thickness of 600 nm) measured in as-deposited films is reported here for the first time. The concurrent effect of the high molar concentration of the starting solution, the substrate temperature values used, and the ageing of the starting solution, which might cause polymerization of the zinc ions with the fluorine species, enhance the electrical properties. The structure of the films is polycrystalline, with a (002) preferential growth. Molar concentration rules the surface morphology as at low concentration an hexagonal and porous structure is developed changing to a uniform compact and small grain size surface in the films deposited with the high molar concentrations.  相似文献   

13.
R. Romero 《Thin solid films》2010,518(16):4499-954
Nickel oxide thin films have been deposited in an open atmosphere onto glass substrates by chemical spray pyrolysis using aqueous nickel acetate solutions and air as driving gas. The films show a strong variation in the surface morphology depending on the substrate temperature and the precursor solution flux. At 350 °C substrate temperature, a reticular tissue-like film morphology is obtained, becoming the reticular nickel oxide fibres of the film thicker with increasing precursor solution flux. At 450 °C substrate temperature, the film growth rate is 4 times slower and a highly symmetric self-ordering of the material at nanometer length scale occurs. These films consist of interconnected grains separated by pores, both of about 100 nm in size. XRD and TEM revealed that the films are cubic NiO, being the crystallite size around 10 nm. The optical band gap of the films decreases strongly for increasing film thickness from 4.3 eV to 3.65 eV.  相似文献   

14.
Zinc phthalocyanine (ZnPc), C32H16N8Zn, is a planar organic molecule having numerous optical and electrical applications in organic electronics. This work investigates the influence of various deposition parameters on the morphology of vapour thermal evaporated ZnPc films. For this purpose, ZnPc is deposited at different substrate temperatures up to 90 °C and film thickness up to 50 nm onto various substrates. The morphology of this ZnPc layers is characterised by X-ray diffraction (XRD), X-ray reflectivity (XRR) and atomic force microscopy (AFM) methods. XRD measurements show that all ZnPc films are crystalline in a triclinic (α-ZnPc) or monoclinic (γ-ZnPc) phase, independent from the kind of substrate, layer thickness, or substrate temperature. The ZnPc powder, the starting product for the thermally evaporated ZnPc films, is present in the stable monoclinic β-phase. Thus, the stacking of the ZnPc molecules changes completely during deposition. The crystallite size perpendicular to the substrate determined by XRD microstructure analysis is in the range of the layer thickness while the lateral size, obtained by AFM, is increasing with substrate temperature and film thickness. AFM and XRR show an increase of the layer roughness for thicker ZnPc layers and higher substrate temperatures during film deposition. The strain in the ZnPc films decreases for higher substrate temperatures due to enhanced thermal relaxation and for thicker ZnPc films due to lower surface tension.  相似文献   

15.
Keh-moh Lin 《Thin solid films》2007,515(24):8601-8604
In this study, transparent conductive Al-doped ZnO films were deposited by the sol-gel method. The growth mechanism of the film microstructure and its influences on the electrical properties were discussed. It was found that dopant and solution concentration affected the nucleation behavior considerably. The preferred growth orientation of ZnO crystallite was restrained by the film itself. The repeated dip-coating processes did not enable the crystallite size to grow obviously, but it could allow crystallite and atoms to find the suitable positions and therefore led to a better film quality. Consequently, this process led to an electrical resistivity of 7.08 × 10− 3 Ω cm and a high transmittance of over 80% in the visible region. The best sample was obtained for an Al concentration of 1 at.% and at 600 °C for pre- and post-heat treatment.  相似文献   

16.
ZnO thin films with preferential C-orientation and dense microstructure have been prepared using RF magnetron sputtering method by the insertion of a sol-gel grown ZnO buffer layer. The XRD results show that the C-orientation of the film deposited on ZnO buffer is obviously better than that deposited directly on lime-glass substrate. With an increase of the RF power from 100 to 380 W, C-orientation of the films with ZnO buffer improves and the grain size increases. When the RF power equals 550 W, the orientation of the film changes to (1 0 0) and the grain size decreases. The crystalline and microstructure quality of the films can be improved after annealing, however, the grain size is not much dependent on the annealing temperature in the range of 560-610 °C.  相似文献   

17.
Highly conducting tri-layer films consisting of a Cu layer sandwiched between Al-doped ZnO (AZO) layers (AZO/Cu/AZO) were prepared on glass substrates at room temperature by radio frequency (RF) magnetron sputtering of AZO and ion-beam sputtering of Cu. The tri-layer films have superior photoelectric properties compared with the bi-layer films (Cu/AZO, AZO/Cu) and single AZO films. The effect of AZO thickness on the properties of the tri-layer films was discussed. The X-ray diffraction spectra show that all films are polycrystalline consisting of a Cu layer with the cubic structure and two AZO layers with the ZnO hexagonal structure having a preferred orientation of (0 0 2) along the c-axis, and the crystallite size and the surface roughness increase simultaneously with the increase of AZO thickness. When the AZO thickness increases from 20 to 100 nm, the average transmittance increases initially and then decreases. When the fixed Cu thickness is 8 nm and the optimum AZO thickness of 40 nm was found, a resistivity of 7.92 × 10−5 Ω cm and an average transmittance of 84% in the wavelength range of visible spectrum of tri-layer films have been obtained. The merit figure (FTC) for revaluing transparent electrodes can reach to 1.94 × 10−2 Ω−1.  相似文献   

18.
Highly conducting aluminum-doped ZnO (30 nm)/Ag (5-15 nm)/aluminum-doped ZnO (30 nm) multilayer thin films were deposited on glass substrate by rf magnetron sputtering (for top/bottom aluminum-doped ZnO films) and e-beam evaporation (for Ag film). The transmittance is more than 70% for wavelengths above 400 nm with the Ag layer thickness of 10 nm. The resistivity is 3.71 × 10− 4 Ω-cm, which can be decreased to 3.8 × 10− 5 Ω-cm with the increase of the Ag layer thickness to 15 nm. The Haacke figure of merit has been calculated for the films with the best value being 8 × 10− 3 Ω− 1. It was shown that the multilayer thin films have potential for applications in optoelectronics.  相似文献   

19.
C.H. Tseng  H.C. Chang  C.Y. Hsu 《Vacuum》2010,85(2):263-267
Transparent and conductive Al-doped (2 wt.%) zinc oxide (AZO) films were deposited on inexpensive soda-lime glass substrates by using rf magnetron sputtering at room temperature. This study analyzed the effects of argon sputtering pressure, which varied in the range from 0.46 to 2.0 Pa, on the morphological, electrical and optical properties of AZO films. The only (0 0 2) diffraction peak of the film were observed at 2θ~34.45°, exhibiting that the AZO films had hexagonal ZnO wurtzite structure, and a preferred orientation with the c-axis perpendicular to the substrate. By applying a very thin aluminum buffer layer with the thickness of 2 nm, findings show that the electrical resistivity was 9.46 × 10−4 Ω-cm, and the average optical transmittance in the visible part of the spectra was approximately 81%. Furthermore, as for 10 nm thick buffer layer, the electrical resistivity was lower, but the transmittance was decreased.  相似文献   

20.
Sun Yanfeng  He Zhidan  Zou Zhao Yi 《Vacuum》2006,80(9):981-985
AZO (ZnO:Al) transparent conductive thin film was prepared by RF magnetron sputtering with a AZO (98 wt% ZnO 2 wt% Al2O3) ceramic target in the same Ar+H2 ambient at different substrate temperatures ranging from 100 to 300 °C. The minimum resistivity of AZO films was 7.9×10−4 Ω cm at the substrate temperature of 200 °C. The average transmission in the visible rang was more than 90%. Scanning electron microscopy and XRD analyses showed that the surface morphology of the AZO samples altered with the increasing of the substrate temperature. AZO film prepared at 200 °C in the pure Ar ambient was also made as comparison about the resistivity, carrier concentration and the average crystallite size. The resistivity became about 3 times higher. The carrier concentration became lower and the average crystallite size was smaller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号