首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Favourable conditions for the growth of good quality silicon carbide (SiC) whiskers from rice husk have been discussed in the light of available evidence on the probable growth mechanism and the theoretical understanding of the same. Preliminary results indicate an increase in whisker yield at lower temperatures and coarsening of whiskers with longer duration of conversion.  相似文献   

2.
Nanocrystalline cubic silicon carbide thin films have been fabricated by helicon wave plasma enhanced chemical vapour deposition on Si substrates using the mixture of SiH4, CH4, and H2 at a low substrate temperature of 300 °C. The infrared absorption spectroscopy analyses and microstructural characteristics of the samples deposited at various magnetic fields indicate that the high plasma intensity in helicon wave mode is a key factor to the success of growing nanocrystalline silicon carbide thin films at a relative low substrate temperature. Transmission electron microscopy measurements reveal that the films consist of silicon carbide nanoparticles with an average grain size of several nanometers, and the light emission measurements show a strong blue photoluminescence at room temperature, which is considered to be caused by the quantum confine effect of small size silicon carbide nanoparticles.  相似文献   

3.
Metal-organic chemical vapour deposition (MOCVD) of various phases in PrOx system has been studied in relation with deposition temperature (450–750 °C) and oxygen partial pressure (0.027–100 Pa or 0.2–750 mTorr). Depositions were carried out by pulsed liquid injection MOCVD using Pr(thd)3 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) precursor dissolved in toluene or monoglyme. By varying deposition temperature and oxygen partial pressure amorphous films or various crystalline PrOx phases (Pr2O3, Pr7O12, Pr6O11) and their mixtures can be grown. The pure crystalline Pr2O3 phase grows only in a narrow range of partial oxygen pressure and temperature, while high oxygen pressure (40–100 Pa) always leads to the most stable Pr6O11 phase. The influence of annealing under vacuum at 750 °C on film phase composition was also studied. Near 90% step coverage conformity was achieved for PrOx films on structured silicon substrates with aspect ratio 1:10. In air degradation of Pr2O3 films with transformation to Pr(OH)3 was observed in contrast to Pr6O11 films.  相似文献   

4.
Thin films of different molybdenum carbides (δ-MoC1−x, γ′-MoC1−x and Mo2C) have been deposited from a gas mixture of MoCl5/H2/C2H4 at 800°C by CVD. The H2 content in the vapour has a strong influence on the phase composition and microstructure. Typically, high H2 contents lead to the formation of nanocrystalline δ-MoC1−x films while coarse-grained γ′-MoC1−x is formed with an H2-free gas mixture. This phase has previously only been synthesized by carburization of Mo in a CO atmosphere and it has therefore been considered as an oxycarbide phase stabilized by the presence of oxygen in the lattice. Our results, however, show that γ′-MoC1−x films containing only trace amounts of oxygen can be deposited by CVD. Stability calculations using a FP-LMTO method confirmed that the γ′-MoC1−x phase is stabilized by oxygen but that the difference in energy between e.g. δ-MoC0.75 and oxygen-free γ′-MoC0.75 is small enough to allow the synthesis of the latter phase in the absence of kinetic constraints. Annealing experiments of metastable δ-MoC1−x and γ′-MoC1−x films showed two different reaction products suggesting that kinetic effects play an important role in the decomposition of these phases.  相似文献   

5.
Transient chemical vapour deposition experiments were produced from MTS/H2 mixtures by varying the deposition temperature or the gas flow rates (QMTS or QH2) versus time. The gas phase, deposition rates and properties of the transient coating (φTr) were investigated and adhesion assessments of SiC/φTr/SiC bilayers were performed by scratch testing. Transient stages resulting from a decrease of QMTS or temperature lead to silicon co-deposition, but do not affect interfacial properties. Transient stages resulting from a decrease of QH2 eventually lead to carbon co-deposition. Thick and continuous carbon interlayers lead to a poor adhesion whereas thin and discontinuous layers do not.  相似文献   

6.
Silicon oxide films have been deposited with remote plasma chemical vapour deposition (RPCVD) at low temperatures (<300 °C) from SiH4---N2O. The effect of a gas-phase reaction on the SiO2 film properties and Si/SiO2 interface was investigated. As the partial pressure ratio was increased above N2O/SiH4 = 4, a gas-phase reaction with powder formation was observed, which degraded film properties, increased surface roughness, and decreased deposition rate. When N2O/SiH4 <4, there was no detectable IR absorption in the film associated with hydrogen-related bonds (Si---OH and Si---H) but when N2O/SiH4 >4, the incorporation of Si---OH bond became significant and Si1+, intermediate state silicon at the interface, was more abundant. The oxide fixed charge, interface trap density, surface roughness and leakage current were increased when there was powder formation in the gas phase. High plasma power also favoured the powder formation in the gas phase. C---V and I---V characteristics were measured and it was shown that these electrical properties were directly related to the process condition and material properties of the oxide and the Si/SiO2 interface.  相似文献   

7.
Aluminium hydride oxide, HAlO, an Al-compound with hydrogen and oxygen directly bound to aluminium is produced by chemical vapour deposition (CVD). At higher process-temperatures a second material, Al·Al2O3, can be obtained. These materials differ not only in chemical composition, but also in surface morphology. While the first forms a smooth structural surface, the second builds up a highly chaotic surface composed of nanowires.The different behaviour of normal human dermal fibroblasts (NHDF) on these surfaces in terms of proliferation and differentiation was studied. NHDF have the possibility to differentiate into their contractile form, the myofibroblast (MF), as a response to the contact with a given surface or upon induction by growth factors.We were able to show, that cell compatibility and proliferation on HAlO and on Si-wafers are comparable, whereas NHDF do not proliferate on Al·Al2O3. MF differentiation could be seen on both, HAlO and Si-wafer, but not on Al·Al2O3.  相似文献   

8.
Carbon nanotubes were synthesized on silicon nitride substrates by thermal chemical vapour deposition using an iron precursor catalyst. The nanotubes were characterized by AFM, FESEM, TEM and micro-Raman spectroscopy. The surface topography of the substrate, dense and flat or porous and rough, controlled the catalyst distribution and carbon nanotubes growth. Flat surfaces led to the synthesis of single-walled carbon nanotubes, whereas the porous ones promoted the growth of multi-walled carbon nanotubes of 60 nm diameter. These nanotubes preferentially grew on the porous sites, exhibiting a good substrate-nanotube interface.  相似文献   

9.
Aligned silicon carbide whiskers were prepared from porous carbon foams by thermal evaporation of silicon. High-density silicon carbide whiskers were vertically deposited on the surface of siliconizing carbon foam. The whiskers were straight and hexagon-shaped with diameter of 1-2 μm and length of about 40 μm. They consisted of a single-crystalline zinc blende structure crystal in the [111] growth direction. The pore structure of carbon foam played an important role in determining distribution of the whiskers on the surface of siliconizing carbon foam. When carbon foam with higher porosity and larger pore size was employed, distributions of the whiskers were more ordered and more intensive. The whiskers were grown by the vapor-solid (VS) mechanism.  相似文献   

10.
A high yield of boron suboxycarbide whiskers has been obtained through glycerol assisted Chemical Vapour Deposition (CVD) mechanism. Here we demonstrate that, glycerol, previously treated as a traditional organic binder, is more effective in assisting the high yield growth of boron suboxycarbide whiskers than carbon powders. It is suggested that the source materials act as the polymerization catalyst and the carbonization of glycerol promotes the growth of boron suboxycarbide whiskers. Our finding provides a convenient way to fabricate boron suboxycarbide whiskers.  相似文献   

11.
《材料科学技术学报》2019,35(12):2942-2949
In this work, the ZrC-SiC composite coatings were co-deposited by chemical vapor deposition (CVD) using ZrCl4, MTS, CH4 and H2 as raw materials. The morphologies, compositions and phases of the composite coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results indicated that the morphologies, compositions and phases of the composite coatings were related to the deposition temperature, the flow rate of the carrier H2 gas, and the ratio of C/Zr. Moreover, the co-deposition mechanism of the composite coatings was also studied. It was found that different deposition temperatures resulted in different deposition mechanisms. At temperatures in the range of 1150–1250 °C, the ZrC-SiC co-deposition was controlled by the surface kinetic process. At temperatures in the range of 1250–1400 °C, the ZrC-SiC co-deposition was controlled by the mass transport process.  相似文献   

12.
We report the growth of thin films of cerium oxide using the metal-organic chemical vapour deposition (MOCVD) technique. The homoleptic complex, Ce(fod)4, where fod-H is 1,1,1,2,2,3,3-heptafluoro-7,7-dimethyloctane-4,6-dione, was used as a precursor. Silicon wafers with a (100) orientation were used as substrates. This work can be considered a feasibility study of this precursor as a potential source of ceria for the eventual production of solid solutions with a stoichiometry of Ce0.9Gd0.1O1.95. These ceramic films are intended for use as electrolytes in solid oxide fuel cells (SOFCs). In this paper, the difficulties associated with CVD growth of oxide films using solid phase precursors such as Ce(fod)4 which contain fluorinated ligands are discussed as well as the methods used to eliminate such problems. The variation of important CVD parameters such as moist oxygen flow rate are discussed in terms of their effect on the growth rate and the elemental composition of the deposited films. Analysis was carried out using techniques such as scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray fluorescence.  相似文献   

13.
The structure and spectroscopic properties of nano-structured silicon carbide (SiC) thin films were studied for films obtained through deposition of decomposed ethylene (C2H4) on silicon wafers via hot filament chemical vapor deposition method at low temperature followed by annealing at various temperatures in the range 300-700 °C. The prepared films were analyzed with focus on the early deposition stage and the initial growth layers. The analysis of the film's physics and structural characteristics was performed with Fourier transform infrared spectroscopy and Raman spectroscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy, and X-ray diffraction. The conditions for forming thin layer of cubic SiC phase (3C-SiC) are found. X-ray diffraction and Raman spectroscopy confirmed the presence of 3C-SiC phase in the sample. The formation conditions and structure of intermediate SiC layer, which reduces the crystal lattice mismatch between Si and diamond, are essential for the alignment of diamond growth. This finding provides an easy way of forming SiC intermediate layer using the Si from the substrate.  相似文献   

14.
The growth of Ge on (110) and (111) oriented Si substrates is of great interest to enhance the mobility of both holes and electrons in complementary metal oxide semiconductor transistors. However, the quality of thick, relaxed Ge layers grown epitaxially on these surfaces is usually much lower than similar layers grown on (100) Si, resulting in both higher defect densities (i.e. threading dislocations and stacking faults) and rougher surfaces. In this work we have investigated the growth of Ge layers on (110) and (111) Si substrates by reduced-pressure chemical vapour deposition using a two temperature process. We have found that the combination of suppressing the Ge seed layer roughness and high temperature post-growth annealing can reduce the rms surface roughness of (110) Ge layers to below 2 nm and the threading dislocation density to below 1 × 107 cm− 2. Thick (111) Ge layers were found to exhibit a very high density of stacking faults, that could not be reduced by post-growth annealing and a higher rms surface roughness of around 12 nm, which was limited by the Ge seed layer.  相似文献   

15.
The paper deals with the properties of silicon films obtained by low-pressure chemical vapour deposition (LPCVD). Two gaseous sources characterized by different deposition temperatures, i.e. disilane Si2H6 (420-520 °C) and silane SiH4 (520-750 °C), was studied in order to understand the influences of deposition and crystallization kinetics on silicon film properties. Thus, the deposition of amorphous, semi-crystallized and polycrystalline silicon films was related to “volume random” and “surface columnar” crystallization phenomena, highlighting a linear relationship between the refractive index and the polysilicon volume fraction and, showing complex residual stress dependency with process conditions. Finally, by introducing the ratio Vd/Vc between the deposition and crystallization rates as a major parameter, different deposition behaviours and related semi-empirical relationships were defined in order to characterize fully the various properties of LPCVD silicon films (microstructure, polysilicon volume fraction, refractive index and residual stress) according to the chosen gaseous source, silane or disilane.  相似文献   

16.
The infrared (IR) absorption spectra and the behavior of the refraction index of a two-phase non-stoichiometric SiO2 film with excess Si have been studied as a function of the excess of Si and post-deposition thermal treatment. The oxides were deposited by low-pressure chemical vapor deposition using SiH4 and N2O as reactant gases at a substrate temperature in the range of 650 to 750 °C. Some of the films were given a final annealing treatment at temperatures ranging from 700 to 1100 °C in N2 for 30 min. Both annealed and as-deposited oxides have IR absorption peaks associated with the bending, rocking and stretching modes of the Si-O-Si bonds in SiO2, although the exact location of these peaks is different for different contents of excess silicon and it also depend on the post-deposition thermal treatment given to the oxides. Unannealed samples present a shift of the stretching peak towards low wavenumbers as the excess of Si is increased. The samples annealed at 1000 °C on the other hand do not present this shift. Unannealed samples with large content of Si also present an absorption peak at 890 cm−1 that could be associated with partially oxidized Si. It is suggested that at least part of the excess Si in the as-deposited samples is present in the form of an SiOx phase while in the annealed samples a clear separation occurs between a Si and a SiO2 phase. The behavior of the refraction index is similar for both types of sample, increasing as the excess silicon is increased.  相似文献   

17.
We investigated the structural changes in tungsten wire heated to 1800 °C in SiH4/CH4/H2/N2 atmosphere and the effect of the aging tungsten wire on the properties of N-doped hydrogenated nanocrystalline cubic silicon carbide (nc-3C-SiC:H) thin films. The aged tungsten wire had two parts: hot parts of the middle of the wire and relatively cold parts connected to clamps. Tungsten carbide (W2C) layer formed in the wire of the hot parts, while crystalline silicon and cubic silicon carbide (c-Si/3C-SiC) layer deposited on the wire of the cold parts. N-doped nc-3C-SiC:H thin films were deposited for 5 min (thickness: ~ 30 nm) after the tungsten wire was heated under the same condition as during the film deposition for given times (exposure time). No changes in the structural, electrical and optical properties of the nc-3C-SiC:H thin films were observed for the exposure time up to 450 min.  相似文献   

18.
Carbon spheres, with uniform diameters of about 1 μm, have been achieved via Chemical vapour deposition (CVD). The fabricated materials have been fully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray analysis (EDX). The results show that the spheres are 95% carbon. The formation mechanism of carbon spheres has also been discussed.  相似文献   

19.
20.
J. Ball  H.S. Reehal 《Thin solid films》2012,520(7):2467-2473
The Au catalysed, vapour-liquid-solid growth of Si nanowires on Si substrates of different orientations has been studied using electron cyclotron resonance plasma-assisted chemical vapour deposition (ECRCVD). ECRCVD plasma excitation is found to strongly promote wire growth rate and density with wire diameters in excess of 200 nm under the conditions used. Substrate orientation and nanowire density are strongly correlated. This has been studied using multicrystalline as well as single crystal Si substrates. It is suggested that the Gibbs-Thomson effect can account for the behaviour of wire density with orientation. The application of an RF generated, DC self-bias of − 5 V on the substrate during growth strongly enhances wire density without affecting growth rate or diameter. A tentative model for wire growth has been proposed which is based on an initial incubation/crystallisation step, followed by silicon incorporation at the vapour-liquid interface being rate-limiting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号