首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Lead-free polycrystalline BiFeO3 (BFO) thin films were developed using a chemical solution deposition method to deposit the films and the multi-mode 2.45 GHz microwave furnace to optimize the annealing condition of the films. Phase-pure BFO films were obtained at 500 °C-600 °C for 1-5 min with a heating rate of 10 °C/min. The film by microwave annealing (MW) at 550 °C for 5 min exhibited a (012)-preferred orientation with a dense morphology of grain size ~ 294 nm. Its dielectric constant of 96.2, low leakage current density of 2.466 × 10− 6 A/cm2, polarization (2Pr) and coercive field (2Ec) of 0.931 μC/cm2 and 57.37 kV/cm, respectively, were improved compared to those by conventional annealing (CA) at the same annealing conditions.  相似文献   

2.
Ti-modified thin films of multiferroic 0.72Bi(Fe1  xTix)O3-0.28PbTiO3 (BFPT, = 0 and 0.02) solid solution were prepared by pulsed laser deposition. The BFPT (= 0 and 0.02) films possess a tetragonal structure with highly preferential (001) orientation. The effects of the ionic substitution on the properties of BFPT (= 0 and 0.02) films have been investigated. The leakage current of the BFPT (= 0.02) thin film is significantly reduced, and the dielectric and ferroelectric properties greatly improved by the aliovalent ionic substitution of Ti4+ for Fe3+. The BFPT (= 0.02) thin film exhibits a reasonably high remnant polarization Pr with 2Pr up to 90 μC/cm2 at 312 kV/cm and a switchable polarization up to 92 μC/cm2 at 417 kV/cm.  相似文献   

3.
HfO2 and HfSiO films were prepared on Si substrates by using radio frequency magnetron sputtering (RFMS). Compositional, structural and electronic properties of the two films were investigated completely. X-ray photoelectron spectroscopy (XPS) spectra showed that the atom ratio of Hf to O was about 1:2 in the HfO2 film and the chemical composition of the HfSiO film was Hf37Si7O56. Grazing incidence X-ray diffraction (GI-XRD) patterns indicated crystallization in the HfO2 film after 400 °C annealing, but there is no detectable crystallization in the HfSiO film after 800 °C annealing. C-V measurements indicated that the dielectric constants for the HfO2 and HfSiO film were 20.3 and 17.3, respectively. The fixed charge densities were found to be 6.0 × 1012 cm−2 for the HfO2 film and 3.7 × 1012 cm−2 for the HfSiO film. I-V characteristics showed that the average leakage current densities were 2.4 μA/cm2 for the HfO2 film and 0.2 μA/cm2 for the HfSiO film at the gate bias of 1 V.  相似文献   

4.
Bi2VO5.5 ferroelectric thin films were fabricated on LaNiO3/Si(100) substrate via chemical solution deposition. Ferroelectric and dielectric properties of the thin films annealed at 500-700 °C were studied. The thin film annealed at 700 °C exhibited more favorable ferroelectric and dielectric properties than those annealed at lower temperatures. The values of remnant polarization 2Pr and coercive field Ec for the film annealed at 700 °C are 10.62 µC/cm2 and 106.3 kV/cm, respectively. The leakage current of the film is about 1.92 × 10− 8 A/cm2 at 6 V. The possible mechanism of the dependence of electrical properties of the films on the annealing temperature was discussed.  相似文献   

5.
Multiferroic BiFeO3/Bi4Ti3O12 (BFO/BTO) double-layered film was fabricated on a Pt(111)/Ti/SiO2/Si(100) substrate by a chemical solution deposition method. The effect of an interfacial BTO layer on electrical and magnetic properties of BFO was investigated by comparing those of pure BFO and BTO films prepared by the same condition. The X-ray diffraction result showed that no additional phase was formed in the double-layered film, except BFO and BTO phases. The remnant polarization (2Pr) of the double-layered film capacitor was 100 μC/cm2 at 250 kV/cm, which is much larger than that of the pure BFO film capacitor. The magnetization-magnetic field hysteresis loop revealed weak ferromagnetic response with remnant magnetization (2Mr) of 0.4 kA/m. The values of dielectric constant and dielectric loss of the double-layered film capacitor were 240 and 0.03 at 100 kHz, respectively. Leakage current density measured from the double-layered film capacitor was 6.1 × 10− 7 A/cm2 at 50 kV/cm, which is lower than the pure BFO and BTO film capacitors.  相似文献   

6.
(Na0.85K0.15)0.5Bi0.5TiO3 (NKBT) thin films derived from different amounts of Na/K excess content were fabricated via an aqueous sol-gel method on a Pt(111)/Ti/SiO2/Si substrate, and the effect of Na/K excess content on the microstructure and electrical properties of the NKBT thin films was investigated. A second phase appears when Na/K excess content is below 20 mol%. Appropriated Na/K excess can enhance the polarization and dielectric properties due to compensation of Na/K loss that occurred during heat treatment. The 20 mol% excess derived NKBT thin film exhibits the best ferroelectric and dielectric properties with a remnant polarization (Pr) of 13.6 μC/cm2, and a coercive field (Ec) of 104.8 KV/cm, together with a dielectric constant of 406 and a dissipation factor of 0.064. Similar to the dielectric response change with Na/K excess content, the decreasing concentration of charged defects is the main reason resulting in the increase of the piezoelectric property. The film with a 20 mol% excess content exhibited an effective d33? of about 56 pm/V. Also, the NKBT with a 20 mol% excess content exhibits the lowest current density of 5.6 × 10− 5 A/cm2 at 10 V.  相似文献   

7.
Lead-free ferroelectric Bi-doped K0.5Na0.5NbO3 (KNN) and undoped KNN films were prepared by pulsed laser deposition. Bi-doped film exhibited good crystallization and improved ferroelectric properties. The dielectric constant and loss tangent were 1038 and 0.138 at 1 kHz, respectively. The remanent polarization (Pr = 28 μC/cm2) of Bi-doped film was about four times larger than that of the undoped film, which attributed to the decrease of oxygen vacancies concentration. The coercive field (Ec = 24 kV/cm) of Bi-doped films was half of the undoped film. The conduction mechanisms of Bi-doped film determined to be Space-Charge-Limited-Current and Poole–Frenkle emission at low and high electric field, respectively.  相似文献   

8.
Quaternary alloyed HfAlTiO thin (~ 4-5 nm) films in the wide range of Ti content have been grown on Si substrates by Atomic Layer Deposition technique, and the effect of both the film composition and the interfacial reactions on the electrical properties of HfAlTiO films is investigated. It is shown that depending on the Ti content, the permittivity and the leakage current density Ileak in HfAlTiO films vary in the range k = 18 ÷ 28 and 0.01-2.4 A cm− 2, respectively. The incorporation of ultra thin SiN interlayer in Al/HfAlTiO/SiN/Si stack gives rise to the sharp (× 103) decrease of the Ileak ~ 6 · 10− 5 A/cm2 at the expense of the rather low capacitance equivalent thickness ~ 0.9 nm.  相似文献   

9.
Highly (001)-oriented 1 mol% Mg doped (Ba0.67,Sr0.33)TiO3 (BST) films with a thickness of 1.25 μm were grown on (110) SrRuO3/(001) SrTiO3 substrates by pulsed laser deposition. X-ray diffraction measurements reveal that the BST thick films have very high crystalline quality, and have a distorted lattice with a large tetragonality a/c = 1.012. The BST thick films have a remanent polarization (Pr) value as large as 10.1 μC/cm2 and a coercive electric field (Ec) value of 65.0 kV/cm. The films possess dielectric constant and loss values of εr = 385.36 and tgδ = 0.038 at 1 kHz and room temperature. The leakage currents of the films are on the order of 10− 5 A/cm2 at ± 150 kV/cm. The mechanism for enhancing electric properties of the Mg doped BST films was also discussed.  相似文献   

10.
Nitrogen-doped indium tin oxide (N-ITO) thin films are deposited on unheated ITO glass substrates in this study. The structural properties of the N-ITO thin films, determined by X-ray diffraction (XRD) and Raman scattering, show that the indium nitride (InN) phase is liable to form in N-ITO films prepared in 20% N2. A broad XRD peak around 2θ = 33° and Raman peak around 490 cm 1 are assigned to the InN phase, but no such peak is observed from the ITO film. Hence, the bandgap is narrowed by N-doping for absorbing light of longer wavelengths of ~ 500 nm. However, under illumination by ultraviolet, the N-ITO film prepared in 20% N2 exhibits the least photocurrent response, which is less than one third that of the N-ITO catalyst that was doped in 16.4% N2. This result is attributed mostly to the fact that the valence and conduction band potentials are not positioned properly between the newly formed InN and host ITO phases, rendering inefficient inter-semiconductor electron transfer. Therefore, higher N-doped samples exhibit a lower photocurrent response. Interestingly, the N-ITO film prepared in 16.4% N2 exhibits the highest photocurrent density of about 165.5 μA/cm2 at an applied bias of 1.2 V. This implies that the N-ITO films should be prepared at a low N2 ratio to ensure a favorable photoelectrochemical activity.  相似文献   

11.
Textured surface boron-doped zinc oxide (ZnO:B) thin films were directly grown via low pressure metal organic chemical vapor deposition (LP-MOCVD) on polyethylene terephthalate (PET) flexible substrates at low temperatures and high-efficiency flexible polymer silicon (Si) based thin film solar cells were obtained. High purity diethylzinc and water vapors were used as source materials, and diborane was used as an n-type dopant gas. P-i-n silicon layers were fabricated at ~ 398 K by plasma enhanced chemical vapor deposition. These textured surface ZnO:B thin films on PET substrates (PET/ZnO:B) exhibit rough pyramid-like morphology with high transparencies (T ~ 80%) and excellent electrical properties (Rs ~ 10 Ω at d ~ 1500 nm). Finally, the PET/ZnO:B thin films were applied in flexible p-i-n type silicon thin film solar cells (device structure: PET/ZnO:B/p-i-n a-Si:H/Al) with a high conversion efficiency of 6.32% (short-circuit current density JSC = 10.62 mA/cm2, open-circuit voltage VOC = 0.93 V and fill factor = 64%).  相似文献   

12.
Field emission properties of metallic element-containing glassy carbon (GC) films were investigated. The metallic element-containing GC films were prepared by carbonization process (i.e., heat treatment in an inert atmosphere) of synthesized polyimide including a metallic compound. In the alkaline (lithium(Li) or cesium(Cs)) or alkali-earth (calcium(Ca), strontium(Sr), or barium(Ba)) metallic element-containing GC films, threshold electric field, Eth, decreased and emission current density, J, increased. In particular, as for the Ba-containing GC film, Eth was decreased to 1.5 V/μm compared with Eth of 3.5 V/μm for the pure GC film without the metallic element addition, and the J reached more than 0.8 mA/cm2 at an electric field of 3.0 V/μm. Analysis based on the Fowler-Nordheim model suggests that the amplification of the local-field-conversion factor β and/or the lowering of the effective-surface-potential barrier ? are due to the metallic elements contained in the GC films. Moreover, structural and compositional analyses showed that compositional modification of the GC film by the metallic elements plays an important role in allowing easy field emission.  相似文献   

13.
High-k Gd2O3 used for thin film transistor (TFT) gate insulators has been synthesized via a simple solution process. Phase analysis and capacitive performance reveal that a high dielectric constant of ~ 20 and a low leakage current level of < 10−8 A/cm2 at 1 MV/cm with a good transparency under the visible wavelength region are readily produced by the sol-gel method. Eu3+ doping leads to an increased dielectric constant induced by the additional electric dipole transition, which is evidently visualized by the photoluminescence behavior and/or by the defect-controlled thin film microstructures. Thus, the solution-processed (Gd,Eu)2O3 film is a viable gate insulator to be considered for the proposed “color emissive” switching devices as well as for the low power-driven TFT devices.  相似文献   

14.
Atomic Vapor Deposition and Atomic Layer Deposition techniques were applied for the depositions of Ta2O5, Ti-Ta-O, Sr-Ta-O and Nb-Ta-O oxide films for Metal-Insulator-Metal (MIM) capacitors used in back-end of line for Radio Frequency applications. Structural and electrical properties were studied. Films, deposited on the TiN bottom electrodes, in the temperature range of 225-400 °C, were amorphous, whereas the post deposition annealing at 600 °C resulted in the crystallization of Nb-Ta-O films. Electrical properties of MIM structures, investigated after sputtering Au top electrodes, revealed that the main characteristics were different for each oxide. On one hand, Ti-Ta-O based MIM capacitors possessed the highest dielectric constant (50), but the leakages currents were also the highest (~ 10− 5 A/cm2 at − 2 V). On the other hand, Sr-Ta-O showed the lowest leakage current densities (~ 10− 9 A/cm2 at − 2 V) as well as the smallest capacitance-voltage nonlinearity coefficients (40 ppm/V2), but the dielectric constant was the smallest (20). The highest nonlinearity coefficients (290 ppm/V2) were observed for Nb-Ta-O based MIM capacitors, although relatively high dielectric constant (40) and low leakage currents (~ 10− 7 A/cm2 at − 2 V) were measured. Temperature dependent leakage-voltage measurements revealed that only Sr-Ta-O showed no dependence of leakage current as a function of the measurement temperature.  相似文献   

15.
Molecular layer deposition (MLD) technique can be used for preparation of various organic-inorganic nanohybrid superlattices at a gas-phase. The MLD method is a self-controlled layer-by-layer growth process under vacuum conditions, and is perfectly compatible with the atomic layer deposition (ALD) method. In this paper, we fabricated a new type organic-inorganic nanohybrid thin film using MLD method combined with ALD. A self-assembled organic layer (SAOL) was formed at 170 °C using MLD with repeated sequential adsorptions of CC terminated alkylsilane and zirconium hydroxyl with ozone activation. A ZrO2 inorganic nanolayer was deposited at the same temperature using ALD with alternating surface-saturating reactions of Zr(OC(CH3)3)4 and H2O. The prepared SAOL-ZrO2 organic-inorganic nanohybrid films exhibited good mechanical stability, excellent insulating properties, and relatively high dielectric constant k (~ 16). They were then used as a 23 nm-thick dielectric for low voltage pentacene-based thin film transistors, which showed a maximum field effect mobility of 0.63 cm2/V s, operating at − 1 V with an on/off current ratio of ~ 103.  相似文献   

16.
Bi3.25Eu0.75Ti3O12 (BET) thin films were deposited on Pt/Ti/SiO2/Si(111) substrates by a metal-organic decomposition method. The effects of annealing temperatures 600-800 °C on microstructure, ferroelectric, dielectric and piezoelectric properties of BET thin films were studied in detail. The spontaneous polarization (87.4 × 10− 6 C/cm2 under 300 kV/cm), remnant polarization (65.7 × 10− 6 C/cm2 under 300 kV/cm), the dielectric constant (992.9 at 100 kHz) and the effective piezoelectric coefficient d33 (67.3 pm/V under 260 kV/cm) of BET thin film annealed at 700 °C are better than those of the others. The mechanisms concerning the dependence of the enhancement d33 are discussed according to the phenomenological equation, and the improved piezoelectric performance could make the BET thin film a promising candidate for piezoelectric thin film devices.  相似文献   

17.
The improved structural and electrical properties of tin-oxide films produced by using ultralow-pressure sputtering (ULPS) method are reported. The Hall mobility of the film (~ 13 cm2/V s) deposited using ULPS was about 1.5 times higher than that of the film (~ 8 cm2/V s) sputtered using a pressure of 4.0 × 10− 1 Pa. As the sputtering pressure was decreased, the film was transformed from an amorphous structure to a nano-crystalline one and gained a stoichiometric SnO2 composition. These changes in the film structure sufficiently decreased the carrier concentration to facilitate application to thin film transistors.  相似文献   

18.
In this article, a methyl-doped silicon oxide low k film for use in inter-level dielectric application has been characterized. The structural and electrical properties of films prepared by chemical vapor deposition before and after different etching and photo-resist stripping (PRS) plasma treatments were studied. Structural properties of the low k film with various extents of forming gas and O2 plasma treatments were reflected by the contents of Si-CH3 and Si-H bonds. Surface roughness of films with plasma treatments was closely linked to the ratios of the cage- and network-structures of Si-O. Electrical properties of plasma-treated films were dependent on the applications of both etching and PRS plasma chemistries. Forming gas PRS caused the least low k film structural change and electrical deterioration compared with O2 treatment. Moreover, Ebd of films decreased significantly by CH2F2 versus C4F8 etch. The best electrical properties of the film was obtained with a leakage current density of < 1 × 10− 8 A/cm2 and a dielectric breakdown strength of ∼3.2 MV/cm after being subjected with C4F8 / N2 / Ar trench etch and forming gas PRS treatment.  相似文献   

19.
Microcrystalline silicon carbide (μc-SiC:H) thin films in stoichiometric form were deposited from the gas mixture of monomethylsilane (MMS) and hydrogen by Hot-Wire Chemical Vapor Deposition (HWCVD). These films are highly conductive n-type. The optical gap E04 is about 3.0-3.2 eV. Such μc-SiC:H window layers were successfully applied in n-side illuminated n-i-p microcrystalline silicon thin film solar cells. By increasing the absorber layer thickness from 1 to 2.5 μm, the short circuit current density (jSC) increases from 23 to 26 mA/cm2 with Ag back contacts. By applying highly reflective ZnO/Ag back contacts, jSC = 29.6 mA/cm2 and η = 9.6% were achieved in a cell with a 2-μm-thick absorber layer.  相似文献   

20.
The electron field emission (EFE) properties of silicon nanostructures (SiNSs) coated with ultra-nanocrystalline diamond (UNCD) were characterized. The SiNS, comprising cauliflower-like grainy structure and nanorods, was generated by reaction of a Si substrate with an Au film at 1000 °C, and used as templates to grow UNCD. The UNCD films were deposited by microwave plasma-enhanced chemical vapour deposition (MPECVD) using methane and argon as reaction gases. The UNCD films can be grown on the SiNS with or without ultrasonication pretreatment with diamond particles. The EFE properties of the SiNS were improved by adding an UNCD film. The turn-on field (E0) decreased from 17.6 V/μm for the SiNS to 15.2 V/μm for the UNCD/SiNS, and the emission current density increased from 0.095 to 3.8 mA/cm2 at an electric field of 40 V/μm. Ultrasonication pretreatments of SiNS with diamond particles varied the structure and EFE properties of the UNCD/SiNS. It is shown that the ultrasonication pretreatment degraded the field emission properties of the UNCD/SiNS in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号