首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of tensile strain rate on deformation microstructure was investigated in Ti-6-4 (Ti-6Al-4V) and SP700 (Ti-4.5Al-3V-2Mo-2Fe) of the duplex titanium alloys. Below a strain rate of 10−2 s−1, Ti-6-4 alloy had a higher ultimate tensile strength than SP700 alloy. However, the yield strength of SP700 was consistently greater than Ti-6-4 at different strain rates. The ductility of SP700 alloy associated with twin formation (especially at the slow strain rate of 10−4 s−1), always exceeded that of Ti-6-4 alloy at different strain rates. It is caused by a large quantity of deformation twins took place in the α phase of SP700 due to the lower stacking fault energy by the β stabilizer of molybdenum alloying. In addition, the local deformation more was imposed on the α grains from the surrounding β-rich grains by redistributing strain as the strain rate decreased in SP700 duplex alloy.  相似文献   

2.
Titanium alloys exhibit excellent corrosion resistance in most aqueous media due to the formation of a stable oxide film, and some of these alloys (particularly Ti-6Al-7Nb) have been chosen for surgical and odontological implants for their resistance and biocompatibility. Treatment with fluorides (F) is known to be the main method for preventing plaque formation and dental caries. Toothpastes, mouthwashes, and prophylactic gels can contain from 200 to 20,000 ppm F and can affect the corrosion behaviour of titanium alloy devices present in the oral cavity. In this work, the electrochemical corrosion behaviour of Ti-1M alloys (M = Ag, Au, Pd, Pt) was assessed in artificial saliva of pH = 3.0 containing 910 ppm F (0.05 M NaF) through open circuit potential, EOC, and electrochemical impedance spectroscopy (EIS) measurements. The corrosion behaviour of the Ti-6Al-7Nb commercial alloy was also evaluated for comparison. E OC measurements show an active behaviour for all the titanium alloys in fluoridated acidified saliva due to the presence of significant concentrations of HF and HF2 species that dissolve the spontaneous air-formed oxide film giving rise to surface activation. However, an increase in stability of the passive oxide layer and consequently a decrease in surface activation is observed for the Ti-1M alloys. This behaviour is confirmed by EIS measurements. In fact, the Ti-6Al-7Nb alloy exhibits lower impedance values as compared with Ti-1M alloys, the highest values being measured for the Ti-1Au alloy. The experimental results show that the corrosion resistance of the studied Ti-1M alloys is similar to or better than that of Ti-6Al-7Nb alloy currently used as biomaterial, suggesting their potential for dental applications.  相似文献   

3.
The effects of molybdenum on the structure and mechanical properties of a Ti-10Zr-based system were studied with an emphasis on improving the strength/modulus ratio. Commercially pure titanium (c.p. Ti) was used as a control. As-cast Ti-10Zr and a series of Ti-10Zr-xMo (x = 1, 3, 5, 7.5, 10, 12.5, 15, 17.5 and 20 wt.%) alloys prepared using a commercial arc-melting vacuum pressure casting system were investigated. X-ray diffraction (XRD) for phase analysis was conducted with a diffractometer. Three-point bending tests were performed to evaluate the mechanical properties of all specimens. The experimental results indicated that these alloys had different structures and mechanical properties when various amounts of Mo were added. The as-cast Ti-10Zr has a hexagonal α′ phase, and when 1 wt.% Mo was introduced into the Ti-10Zr alloy, the structure remained essentially unchanged. However, with 3 or 5 wt.%, the martensitic α″ structure was found. When increased to 7.5 wt.% or greater, retention of the metastable β phase began. The ω phase was observed only in the Ti-10Zr-7.5Mo alloy. Among all Ti-10Zr-xMo alloys, the α″-phase Ti-10Zr-5Mo alloy had the lowest elastic modulus. It is noteworthy that all the Ti-10Zr and Ti-10Zr-xMo alloys had good ductility. In addition, the Ti-10Zr-5Mo and Ti-10Zr-12.5Mo alloys exhibited higher bending strength/modulus ratios at 20.1 and 20.4, respectively. Furthermore, the elastically recoverable angles of these two alloys (26.4° and 24.6°, respectively) were much greater than those of c.p. Ti (2.7°). Given the importance of these properties for implant materials, the low modulus, excellent elastic recovery capability and high strength/modulus ratio of α″ phase Ti-10Zr-5Mo and β phase Ti-10Zr-12.5Mo alloys appear to make them promising candidates.  相似文献   

4.
Both Ti-6Al-4V and 304 stainless steels (304SS) are good engineering alloys and widely used in industry due to their excellent mechanical properties as well as corrosion resistance. Well-developed joining process can not only promote the application of these alloys, but also can provide designers versatile choices of alloys. Brazing is one of the most popular methods in joining dissimilar alloys. In this study, three-selected silver base filler alloys, including Braze 580, BAg-8 and Ticusil®, are used in vacuum brazing of 304SS and Ti-6Al-4V. Based upon dynamic sessile drop test, Braze 580 has the lowest brazing temperature of 840°C, in contrast to 870°C for BAg-8 and 900°C for Ticusil® braze alloy. No phase separation is observed for all brazes on 304SS substrate. However, phase separation is observed for all specimens brazed above 860°C on Ti-6Al-4V substrate. The continuous reaction layer between Braze 580 and 304SS is mainly comprised of Ti, Fe and Cu. The thickness of reaction layer at Braze 580/Ti-6Al-4V interface is much larger than that at Braze 580/304SS interface. Meanwhile, a continuous Cu-Sn-Ti ternary intermetallic compound is found at the Braze 580/Ti-6Al-4V interface. Both Ticusil® and BAg-8 brazed joint have similar interfacial microstructures. Different from the Braze 580 specimen, there is a thick Cu-Ti-Fe reaction layer in both BAg-8/304SS and Ticusil®/304SS interfaces. The formation of Cu-Ti-Fe interfacial layer can prohibit wetting of BAg-8 and Ticusil® molten brazes on 304SS substrate. Meanwhile, continuous Ti2Cu and TiCu layers are observed in Ti-6Al-4V/BAg-8 and Ti-6Al-4V/Ticusil® interfaces.  相似文献   

5.
TIMETAL 54M (in the following Ti-54M) is a newly developed (α + β) titanium alloy with nominal composition Ti-5Al-4V-0.6Mo-0.4Fe. The alloy can provide a cost benefit over Ti-6Al-4V due to improved machinability and formability. These attractive properties might be a driving force for replacing Ti-6Al-4V in many aircraft as well as biomedical applications. Since HCF performance is one of the most important requirements for these applications, it is essential to improve this property by microstructural optimization and by mechanical surface treatments such as shot peening or ball burnishing. The latter improvement is mainly the result of induced near-surface severe plastic deformation which results in work-hardening and the generation of compressive residual stresses that retard fatigue crack propagation. The main aim of the present study was to investigate the potential fatigue life improvements in Ti-54M due to shot peening and ball-burnishing. The process-induced residual stresses and stress-depth profiles were determined by energy-dispersive X-ray diffraction (ED) of synchrotron radiation with the beam energy of 10-80 keV. Results on Ti-54M and Ti-6Al-4V will be compared and correlated with the mean stress and environmental sensitivities of the fatigue strengths in the microstructures.  相似文献   

6.
T. Yuri  Y. Ono  T. Ogata 《低温学》2006,46(1):30-36
Notch effects on the high-cycle fatigue properties of the forged Ti-6Al-4V ELI alloy at cryogenic temperatures were investigated. Also, the high-cycle fatigue data were compared with the rolled Ti-5Al-2.5Sn ELI alloy. The one million cycles fatigue strength (FS) of the smooth specimen for the forged Ti-6Al-4V ELI alloy increased with a decrease of test temperature. However, the FS of each notched specimen at 4 K were lower than those at 77 K. On the other hand, the FS of the smooth and the notched specimens for the forged Ti-6Al-4V ELI alloy at 4 K were lower than those for the rolled Ti-5Al-2.5Sn ELI alloy. This is considered to be the early initiation of the fatigue crack in the forged Ti-6Al-4V ELI alloy compares with the forged Ti-5Al-2.5Sn ELI.  相似文献   

7.
Han-Cheol Choe 《Thin solid films》2011,519(15):4652-4657
The nanotubular surface of Ti-binary and Ti-ternary alloys for biomaterials has been investigated using various methods of surface characterization. Binary Ti-xNb (x = 10, 20, 30, and 40 wt.%) and ternary Ti-30Ta-xNb (x = 3, 7 and 15 wt.%) alloys were prepared by using the high-purity sponges; Ti, Ta and Zr spheres. The nanotube on the alloy surface was formed in 1.0 M H3PO4 with small additions of NaF (0.5 and 0.8 wt.%), using a potentiostat. For cell proliferation, an MC3T3-E1 mouse osteoblast was used. The surface characteristics were investigated using field-emission scanning electron microscope, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy.Binary Ti-xZr alloys had a lamellar and a needle-like structure, whereas, ternary Ti-30Ta-xZr alloys had equiaxed grains with a lamellar martensitic α′ structure. The thickness of the needle-like laths of the α-phase increased as the Zr content increased. The nanotubes formed on the α phase and β phase showed a different size and shape appearance with Zr content. As the Zr content increased from 3 to 40 wt.%, the diameter of the nanotubes in Ti-xZr and Ti-30Ta-xZr alloy decreased from 200 nm to 50 nm. The nanotubular Ti-30Ta-15Zr alloy surface with a diameter of 50 nm provided a good osseointegration; cell proliferation, migration and differentiation.  相似文献   

8.
In the present work the structure and morphology of the phases of nanocomposites formed in rapidly solidified Al-Fe alloys were investigated in details using analytical transmission electron microscopy and X-ray diffraction. Nanoquasicrystalline phases, amorphous phase and intermetallics like Al5Fe2, Al13F4 coexisted with α-Al in nanocomposites of the melt spun alloys. It was seen that the Fe supersaturation in α-Al diminished with the increase in Fe content and wheel speed indicating the dominant role of the thermodynamic driving force in the precipitation of Fe-rich phases. Nanoquasicrystalline phases were observed for the first time in the dilute Al alloys like Al-2.5Fe and Al-5Fe as confirmed by high resolution TEM. High hardness (3.57 GPa) was measured in nanocomposite of Al-10Fe alloy, which was attributed to synergistic effect of solid solution strengthening due to high solute content (9.17 at.% Fe), dispersion strengthening by high volume fraction of nanoquasicrystalline phase; and Hall-Petch strengthening from finer cell size (20-30 nm) of α-Al matrix.  相似文献   

9.
Cell attachment and spreading on Ti-based alloy surfaces is a major parameter in implant technology. Ti39Nb-13Ta-4.6Zr alloy is a new β type Ti alloy developed for biomedical application. This alloy has low modulus and high strength, which indicates that it can be used for medical purposes such as surgical implants.To evaluate the biocompatibility and effects of the surface morphology of Ti-39Nb-13Ta-4.6Zr on the cellular behaviour, the adhesion and proliferation of rat gingival fibroblasts were studied with substrates having different surface roughness and the results were also compared with commercial pure titanium and Ti-6Al-4V. The results indicate that fibroblast shows similar adhesion and proliferation on the smooth surfaces of commercial pure titanium (Cp Ti), Ti-39Nb-13Ta-4.6Zr, and Ti-6Al-4V, suggesting that Ti-39Nb-13Ta-4.6Zr has similar biocompatibility to Cp Ti and Ti-6Al-4V. The fibroblast adhesion and spreading was lower on rough surfaces of Cp Ti, Ti-39Nb-13Ta-4.6Zr and Ti-6Al-4V than on smooth ones. Surface roughness appeared to be a dominant factor that determines the fibroblast adhesion and proliferation.  相似文献   

10.
Cell attachment and spreading on Ti-based alloy surfaces is a major parameter in implant technology. Ti-39Nb-13Ta-4.6Zr alloy is a new β type Ti alloy developed for biomedical application. This alloy has low modulus and high strength, which indicates that it can be used for medical purposes such as surgical implants. To evaluate the biocompatibility and effects of the surface morphology of Ti-39Nb-13Ta-4.6Zr on the cellular behaviour, the adhesion and proliferation of rat gingival fibroblasts were studied with substrates having different surface roughness and the results were also compared with commercial pure titanium and Ti-6Al-4V. The results indicate that fibroblast shows similar adhesion and proliferation on the smooth surfaces of commercial pure titanium (Cp Ti), Ti-39Nb-13Ta-4.6Zr, and Ti-6Al-4V, suggesting that Ti-39Nb-13Ta-4.6Zr has similar biocompatibility to Cp Ti and Ti-6Al-4V. The fibroblast adhesion and spreading was lower on rough surfaces of Cp Ti, Ti-39Nb-13Ta-4.6Zr and Ti-6Al-4V than on smooth ones. Surface roughness appeared to be a dominant factor that determines the fibroblast adhesion and proliferation.  相似文献   

11.
The environmental response of Nb-coated Ti and Ti-6Al-4V alloy was studied at 750 °C in an atmosphere of pS2 ∼ 10−1 Pa and pO2 ∼ 10 −18 Pa. By acting as a diffusion barrier and through the formation of a Nb1−xS scale the Nb coating deposited enhanced the corrosion resistance of both Ti and Ti-6Al-4V alloy. The corrosion products generated on uncoated titanium in the same environment and temperature were characterized by a double layered oxide scale of TiO2 beneath which a TiS2 layer was formed. For the Ti-6Al-4V alloy, α-Al2O3 was precipitated in the external portion of the outer-layer of TiO2 whilst a layer containing Al2S3, TiS2 and vanadium sulphide (possibly V2S3) was idenitified underlying the inner TiO2 layer. After prolonged exposure (168 h), the Nb coating deposited on Ti and Ti-6Al-4V alloy was consumed. A scale following the sequence of TiO2/TiO2+NbO2+Nb2O5/Nb1−xS/TiO2/ TiS2/(substrate) was observed on the surface of the Nb-coated Ti, whilst a scale with sequence of TiO2/V2S3/TiO2+NbO2+Nb2O5/Nb1−xS/TiO2/Al2S3+TiS2/(substrate) characterized the corrosion products formed on the Nb-coated Ti-6Al-4V alloy.  相似文献   

12.
In a previous study, the authors examined the elastic and short-term anelastic springback of Ti6Al4V, CoCrMoC and A316L stainless steel spine rods to observe how the rods mechanically respond in OR contouring. In that study rods were 200?mm long and only the movement at the tip was recorded. The implication of that work was that rods will straighten in-vivo, however, in order for the mechanism of straightening to be determined, the movement of individual bends over time must first be elucidated. Spine rods used were, commercially pure titanium (CP Ti) a primarily α-phase; Ti-6Al-4V; α/β-phase titanium alloy from two different suppliers (denoted by, Ti-6Al-4V (L) and Ti-6Al-4V); β-phase titanium (TNTZ) and CoCrMoC. Following contouring the rods were aged unconstrained, in normal atmosphere or simulated body fluid (SBF) in a CO2 incubator for up to 288?h. Elastic springback is significantly different between alloys with different microstructures. Both types of Ti6Al4V rods, while meeting the ASTM F136 industry standard, have significantly different properties, most importantly yield strength, flexural modulus, and springback. Environment showed no significant impact on anelasticity. The anelastic response of Ti6Al4V L sample, which has relatively more beta phase than the Ti6Al4V sample, follows the pure beta phase TNTZ in its extended time response. CoCrMoC and CP Ti have a very reduced anelastic response compared to the other alloys. This potentially can have unanticipated effects on the outcome of spine procedures, as the surgeon is reliant on the rods having similar properties to achieve a desired outcome.  相似文献   

13.
Study of the hot deformation behaviour in Ti-5Al-5Mo-5V-3Cr-1Zr   总被引:1,自引:0,他引:1  
Structural applications of near beta titanium alloys are gradually increasing in the aerospace industry because of their high specific mechanical properties and good corrosion resistance. Furthermore, a wide range of microstructures can be obtained by thermomechanical processes. This work determines by the use of EBSD technique the mechanism of restoration active in the near beta titanium alloy Ti-5Al-5Mo-5V-3Cr-1Zr for deformations in both α + β and β field near to the β transus temperature (Tβ = 803 °C). Hot compression tests are carried out up to 0.7 true strain by means of a Gleeble® 1500 machine at strain rates of 0.01, 0.1 and 1 s−1. Dynamic recovery of β phase and rotation of the α grains take place predominantly in the α + β field. Further deformation produces continuous dynamic recrystallization of the β phase influenced by the strain rate. Dynamic recovery is observed during deformation above the Tβ, where the misorientation is increasing towards the grain boundaries forming new small grains with a substructure at high strain rates and larger deformation. The stress exponent and the apparent activation energy for the sinh constitutive equations are determined and the microstructural features are correlated with the Zener-Hollomon parameter.  相似文献   

14.
The fatigue strength of an annealed Ti-15Zr-4Nb-4Ta alloy at 1 × 108 cycles was approximately 730 MPa. The fatigue strength of its alloy was much improved following an ageing treatment after a solution treatment. The tension-to-tension fatigue strengths of annealed Ti-6Al-4V, V-free Ti-6Al-7Nb, Ti-6Al-2Nb-1Ta, and Ti-15Mo-5Zr-3Al alloys at 1 × 108 cycles were approximately 685, 600, 700, and 350 MPa, respectively. The ratios of fatigue strength at 1 × 108 cycles to ultimate tensile strength for the α- and (α + β)-type Ti materials were higher than 65%.  相似文献   

15.
A comparison of the superplastic deformation behaviour of Ti-6Al-4V (wt%) between 760 and 940‡ C and Ti-6Al-2Sn-4Zr-2Mo between 820 and 970‡ C has been carried out on sheet materials possessing similar as-received microstructures. High tensile elongations were obtained with maximum values being recorded at 880‡ C for Ti-6Al-4V (Ti-6/4) and at 940‡ C for Ti-6Al-2Sn-4Zr-2Mo (Ti-6/2/4/2), under which conditions both alloys possessed aΒ phase proportion of approximately 0.40. For a given deformation temperature the Ti-6/4 alloy had a slightly lower flow stress than the Ti-6/2/4/2, and this was attributed to the lowerΒ phase proportion in the latter alloy. However, at the respective optimum deformation temperatures the Ti-6/2/4/2 alloy had the lower flow stress. The results show that suitably processed Ti-6/2/4/2 alloy is capable of withstanding substantial superplastic strains at relatively low flow stresses, although the optimum deformation temperature is higher for this alloy than for Ti-6/4 material possessing a similar microstructure.  相似文献   

16.
The present study aims at development of TiB dispersed α-Ti matrix composite by laser melting of Ti-2 wt.% B alloy powder (of particle size ranging from 50-100 μm) using a high power diode laser with argon shroud and depositing the molten alloy on a Ti-6Al-4 V substrate in a layer by layer fashion (up to a maximum of 5 layers were built). Followed by direct laser cladding, the characteristics and mechanical properties of the clad layer were investigated in details. Laser cladding led to formation of TiB dispersed α-Ti matrix composite with an average microhardness of 290 VHN to 500 VHN for different conditions of lasing. The average Young's modulus was considerably improved to 155-165 GPa.  相似文献   

17.
The aim of this study was to investigate the hydroxyapatite coating on the Ti-35Nb-xZr alloy by electron beam-physical vapor deposition. The Ti-35Nb-xZr ternary alloys contained from 3 wt.% to 10 wt.% Zr content were manufactured by arc melting furnace. Hydroxyapatite (HA) coatings were prepared by electron-beam physical vapor deposition (EB-PVD) method, and crystallization treatment was performed in Ar atmosphere at 300 and 500 °C for 1 h. The coated surface morphology of Ti-35Nb-xZr alloy was examined by FE-SEM, EDX and XRD, respectively. In order to evaluate the corrosion behavior, the tests were performed by potentiodynamic, cyclic polarization and AC impedance test. All the electrochemical data were obtained using a potentiostat. The Ti-35Nb-xZr alloys exhibited equiaxed structure with β phase, the peak of β phase increased with Zr contents. The hardness and elastic modulus of Ti-35Nb-xZr alloys decreased as Zr content increased. The HA coated layer was approximately 150 nm and Ca/P ratio of HA coated surface after heat treatment at 500 °C was around 1.67. The HA thin film consisted of small droplets with spherical shape by crystallization. From the anodic polarization curves, HA coated and heat treated Ti-35Nb-10Zr alloy showed higher corrosion potential than other samples. HA coated film on the Ti-35Nb-10Zr alloy can be shown high polarization resistance by crystallization.  相似文献   

18.
Ti-based biocompatible alloys are especially used for replacing failed hard tissue. Some of the most actively investigated materials for medical implants are the beta-Ti alloys, as they have a low elastic modulus (to inhibit bone resorption). They are alloyed with elements such as Nb, Ta, Zr, Mo, and Fe. We have prepared a new beta-Ti alloy that combines Ti with the non-toxic elements Ta and Mo using a vacuum arc-melting furnace and then annealed at 950 degrees C for one hour. The alloy was finally quenched in water at room temperature. The Ti-12Mo-5Ta alloy was characterised by X-ray diffraction, optical microscopy, SEM and EDS and found to have a body-centred-cubic structure (beta-type). It had a lower Young's modulus (about 74 GPa) than the classical alpha/beta Ti-6Al-4V alloy (120 GPa), while its Vickers hardness remained very high (about 303 HV). This makes it a good compromise for a use as a bone substitute. The cytocompatibility of samples of Ti-12Mo-5Ta and Ti-6Al-4V titanium alloys with various surface roughnesses was assessed in vitro using organotypic cultures of bone tissue and quantitative analyses of cell migration, proliferation and adhesion. Mechanically polished surfaces were prepared to produce unorientated residual polished grooves and cells grew to a particularly high density on the smoother Ti-12Mo-5Ta surface tested.  相似文献   

19.
The corrosion and electrochemical behavior of a low stiffness β -Ti-45wt.%Nb (Ti45Nb) was studied in solutions that resemble body environment, as compared to Ti6Al4V and Ti-55wt.%Ni (Ti55Ni, Nitinol) alloys currently used in surgical implants. In Ringers' solution, Ti45Nb alloy exhibited an excellent corrosion resistance, comparable to that of Ti6Al4V and much better than that of Nitinol. In acidic environments, β -Ti45Nb remained passive under conditions where active dissolution was observed for both Ti6Al4V and Nitinol alloys. The results warrant further corrosion and biocompatibility studies of β -Ti45Nb alloy to establish its suitability as implant material.  相似文献   

20.
The electrochemical behaviour of two commercial titanium alloys Ti-6Al-4 V (ASTM F136) and Ti-13Nb-13Zr (ASTM F1713) was investigated in Ringer physiological solution at two pH values (5.5 and 7.0). The corrosion properties were examined by using electrochemical techniques: Potentiodynamic anodic polarization, cyclic polarization and electrochemical impedance spectroscopy (EIS). The electrochemical corrosion properties of both alloys at different conditions were measured in terms of corrosion potential (E corr), corrosion current density (i corr) and passivation current density (i pass). Equivalent electrical circuits were used to modulate EIS data, in order to characterize alloys surface and better understanding the pH effect on the interface alloy/solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号