首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了提高Na_2CaSiO_4:Eu~(3+)荧光粉的发光强度,采用高温固相法合成系列Eu~(3+)、Li~+掺杂Na_2CaSiO_4红色荧光粉。通过X射线粉末衍射和荧光分析,研究荧光粉的结构和发光性能。考察了Eu~(3+)、Li~+掺杂浓度对荧光粉发光性能的影响。结果表明,掺杂了Eu~(3+)、Li~+后Na_2CaSiO_4仍为立方晶系结构,但掺杂后晶胞参数发生了变化,说明Eu~(3+)、Li~+已经进入晶格中。根据离子电负性标度,Li~+(1.009)与Na~+(1.024)电负性相近,Eu~(3+)(1.433)与Ca~(2+)(1.160)电负性相近,掺杂Li~+会优先取代Na~+,Eu~(3+)会优先取代Ca~(2+)。荧光粉随Eu~(3+)、Li~+掺杂浓度的增加,发光强度逐渐增大。当Eu~(3+)掺杂量为0.16时,荧光粉Na_2CaSiO_4:Eu~(3+)的发光达到最大值。Li~+的掺杂对Na_2CaSiO_4:Eu~(3+)荧光粉具有增敏作用。当Li~+掺杂量为0.12时,发射光的强度是掺杂前的1.61倍。  相似文献   

2.
采用高温固相法合成了NaBa_(1-x)PO_4:xEu~(3+)系列橙红色荧光粉。用X射线衍射、扫描电子显微镜、荧光光谱以及色坐标等手段对荧光粉的晶体结构和发光性能进行表征;考察了Eu~(3+)的掺杂摩尔量对荧光粉的晶体结构和发光性能的影响。结果表明:Eu~(3+)的掺杂并没有改变荧光粉的晶体类型,但是导致了晶格收缩,其基质主相是六方晶系的NaBaPO_4。在393 nm近紫外光激发下,最强发射峰和次强发射峰分别位于红光616 nm和橙光591 nm附近,分别属于Eu~(3+)的~5D_0→~7F_2和~5D_0→~7F_1特征跃迁。Eu~(3+)的掺杂量为0.20 mol时荧光粉的发射峰强度最大。Eu~(3+)的光谱性质及其占据基质晶格中Ba(Ⅱ)和Ba(Ⅰ)位点的比例随Eu~(3+)掺杂量的变化而变化,改变Eu~(3+)的掺杂量可以有效调节荧光粉发射光谱中的红、橙光比例。其中荧光粉NaBa_(0.80)PO_4:0.20Eu~(3+)的性能优异,适合与近紫外LED芯片相匹配发光。  相似文献   

3.
采用水热法合成了YVO_4:Eu~(3+)红色荧光粉。通过X射线粉末衍射(XRD)、扫描电镜(SEM)以及荧光光谱(PL)对荧光粉的晶体结构、形貌和发光性能进行表征。结果表明,在水热条件下合成了一系列四方锆石结构的Y_(1-x)Eu_xVO_4纳米晶,一次性粒径约为7nm,组装成球形形貌、分散性好、尺寸均一的颗粒,其平均粒径约为80nm。在316nm波长激发下,YVO_4:Eu~(3+)荧光粉最强发光峰位于619nm处,对应于Eu~(3+)的~5 D_0→~7F_2电偶极跃迁,且Eu~(3+)最佳摩尔分数为11%。  相似文献   

4.
用高温固相法合成了Ba_(2-X)b_(10)O_(17):x Eu~(3+)(x=0.04,0.08,0.12,0.16,0.20,0.24,0.28)红色荧光粉,并对此荧光粉的结构及发光特性进行了研究。结果表明,样品用λ_(ex)=406 nm激发时,在λ=702 nm处得到发光光谱,随着Eu~(3+)掺杂浓度的增大,样品的发光性能先增强后减弱。样品在x=0.20处发光性能最好,x0.20时,随着Eu~(3+)掺杂浓度的增大,样品发光性能增强;x0.20时,样品发生浓度淬灭,发光性能减弱。说明Eu~(3+)的掺杂浓度在Ba_(2-X)b_(10)O_(17):x Eu~(3+)红色荧光粉的发光性能中发挥重要的作用。  相似文献   

5.
利用溶胶-凝胶法制备SiO_2:Eu~(3+)荧光粉,通过XRD测试对荧光粉的结构进行表征同时通过激发和发射光谱表征荧光粉的发光性能,探究了Eu~(3+)的掺杂量、退火温度、碱金属离子Na+作为敏化剂对样品的结构和发光性能的影响。结果显示样品经700℃退火处理,掺杂5mol%Eu~(3+)时发光性能最佳,且掺入Na+后,SiO_2:Eu~(3+)荧光粉的发光性能提高,Na+掺杂量在5%时其发光性能最佳。  相似文献   

6.
Sr_3Al_2O_6:0.05Eu~(3+)荧光粉的制备及光谱性质   总被引:1,自引:0,他引:1  
《化工设计通讯》2017,(7):150-151
用高温固相反应法合成了Sr_3Al_2O_6:0.05Eu~(3+)红光荧光粉,研究了样品的发光性质。在紫外光和近紫外光激发下,样品的发射光谱为Eu~(3+)的~5D_0→~7F_J(J=0,1,2,3,4)特征发射组成。荧光粉的激发光谱由宽带峰和锐峰组成。其中宽带峰是位于紫外区的O~2→Eu~(3+)的电荷迁移跃迁,锐峰是位于近紫外和可见光区的Eu~(3+)的f-f跃迁吸收。Sr_3Al_2O_6:Eu~(3+)是一种适于紫外光激发的红光荧光粉。  相似文献   

7.
采用低温燃烧法分别制备了Y_2O_3:Eu~(3+)和钐(Sm~(3+))、铈(Ce~(3+))掺杂的Y_2O_3:Eu~(3+)红色荧光粉,并研究了反应温度及掺杂量对荧光粉性能的影响。使用激光粒度仪、X射线粉末衍射仪和荧光光谱仪,对样品的物相、粒度及发光特性进行了表征和分析。结果表明,Y_2O_3:Eu~(3+)的最佳反应温度为200℃,Sm~(3+)和Ce~(3+)掺杂Y_2O_3:Eu~(3+)的粒径分别分布在396~615 nm和531~955 nm,Sm~(3+)和Ce~(3+)的掺杂均能显著增强Y_2O_3:Eu~(3+)红色荧光粉的发光性能。  相似文献   

8.
以硝酸锆、硝酸锂、Eu(NO_3)_3·6H_2O为原料,采用微波固相烧结法合成了系列红色荧光粉Li_6Zr_2O_7:Eu~(3+)。利用XRD和荧光光度计对样品的组成和发光性能进行了表征。考察了烧结时间、烧结温度及Eu~(3+)的含量对荧光粉发光性能的影响。XRD分析结果表明,Li_6Zr_2O_7:Eu~(3+)荧光粉为纯相晶体结构。根据离子电负性标度可知,Eu~(3+)(1.433)会优先取代电负性相近Zr~(4+)的位置(1.610)。当微波烧结时间为10 min、烧结温度为500℃、Eu~(3+)在晶体中的含量为14%时(以Li_6Zr_2O_7的物质的量为基准,下同),在465 nm激发下,制备得到的Li_6Zr_2O_7:0.14Eu~(3+)荧光粉在615 nm处产生最强的红光发射,且发射光谱在615 nm的强度是激发光谱在465 nm强度的1.54倍。此时荧光粉色坐标为X=0.65,Y=0.35,具有很高的色纯度,与商用红色荧光粉(0.63,0.34)相比更接近国家标准(0.67,0.33)。  相似文献   

9.
采用燃烧法合成掺铕磷酸钙发光材料,采用XRD和荧光光谱对其结构和荧光性质进行表征。结果表明:掺杂Eu~(3+)后未改变Ca_3(PO_4)_2的晶相结构;荧光粉样品在激发主峰位于394 nm处,归属于Eu~(3+)的~7F_0→~5L_6跃迁,发射主峰位于616 nm处,归属于Eu~(3+)的~5D_0→~7F_2电偶极跃迁;当Eu~(3+)掺杂浓度为10%时,得到Ca_(2.9)(PO_4)_2:0.1Eu~(3+)发光材料的发光强度不但是最强的,而且发出的色光与红光最为接近,是一类潜在的近紫外激发的红光发射荧光粉。  相似文献   

10.
采用高温固相法合成了一系列NaBaSi_xP_(1-x)O_4:Eu~(3+)橙红色荧光粉。表征了荧光粉的晶体结构和发光性能。考察了煅烧温度和Si~(4+)掺杂量对荧光粉结构和发光性能的影响。结果表明:掺杂Si~(4+)对荧光粉的晶型没有明显影响,但是导致了晶格膨胀。750℃煅烧时基质已形成NaBaPO_4相,晶型为六方晶系,荧光粉发射峰强度最强。激发光谱由200~280 nm的宽带和310~500 nm的一系列尖峰组成,分别对应于O~(2–)→Eu~(3+)电荷迁移带和Eu~(3+)的f→f能级跃迁吸收,最强激发峰位于393 nm左右,与近紫外LED芯片的发射光谱匹配。在393 nm近紫外光激发下,最强发射峰和次强发射峰分别位于红光616 nm和橙光591 nm附近,分别属于Eu~(3+)的~5D_0→~7F_2和~5D_0→~7F_1特征跃迁。NaBa_(0.92)Si_xP_(1–x)O_4:0.08Eu~(3+)中Si~(4+)的最佳掺杂量为0.02 mol,Na Ba_(0.92)Si_(0.02)P_(0.98)O_4:0.08Eu~(3+)样品在616和591 nm附近的发射强度比单掺杂Eu~(3+)的样品分别提高了66.6%和63.6%。  相似文献   

11.
采用溶胶凝胶-燃烧法,柠檬酸为络合剂合成出系列GdAlO_3∶Eu~(3+)和LaAlO_3∶Eu~(3+)荧光粉及GdAlO_3∶Er~(3+), Yb~(3+)上转换发光粉。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、荧光光谱和上转换发光光谱对样品的结构、形貌和发光性能进行了研究。XRD分析表明:1000℃热处理获得具有正交结构的GdAlO_3∶Eu~(3+)荧光粉和GdAlO_3∶Er~(3+),Yb~(3+)上转换发光粉及具有六方结构的LaAlO_3∶Eu~(3+)荧光粉。柠檬酸比例和热处理温度对发光粉晶粒尺寸和晶相的形成有影响。荧光光谱研究表明:荧光粉的主发射峰来自于Eu~(3+)离子的~5D_0→~7F_2跃迁。柠檬酸比例及基质阳离子影响Eu~(3+)离子的局域对称环境。GdAlO_3∶Er~(3+),Yb~(3+)上转换发光粉在980 nm红外光激发下,发射来自于Er~(3+)离子~2H_(11/2)、~4S_(3/2)到~4I_(15/2)跃迁和~4F_(9/2)到~4I_(15/2)跃迁。计算并比较了GdAlO_3∶Eu~(3+),LaAlO_3∶Eu~(3+)和GdAlO_3∶Er~(3+),Yb~(3+)样品的色坐标。  相似文献   

12.
采用高温固相法制备了一系列Eu~(3+)掺杂ZnMoO_4的荧光粉。采用粉末X射线衍射仪对样品的物相进行了分析,对样品的光致发光性质进行了系统的研究。Eu~(3+)最强的发射峰位于617nm处。所制备的荧光粉发光颜色为红色,并且由发光强度对比图得出Eu~(3+)离子的最佳掺杂浓度为0.04。  相似文献   

13.
采用水热法结合高温烧结处理制备Bi~(3+)掺杂Y_2O_3∶Eu~(3+)纳米荧光粉,并考察了掺杂Bi~(3+)对Y_2O_3∶Eu~(3+)荧光粉结构、紫外可见光吸收和发光性能的影响。X射线粉末衍射测试表明,Y_2O_3∶Eu~(3+)掺杂Bi~(3+)(摩尔分数3%)后保持纯立方相结构,纳米颗粒的平均粒径约为16.8nm。通过激发和发光光谱测试,讨论了Bi~(3+)对Eu~(3+)的敏化作用,发现Bi~(3+)离子能促进Y_2O_3∶Eu~(3+)于300~400nm的近紫外光吸收,再以能量转移的方式传给Eu~(3+)。因此,利用Bi~(3+)电荷迁移带的近紫外吸收,是实现近紫外光有效激发Y_2O_3∶Eu~(3+)荧光粉的一种重要途径。  相似文献   

14.
采用微乳液法合成了Y_2SiO_5∶Eu~(3+)系列荧光粉。利用XRD、扫描电镜(SEM)、光电子能谱(EDS)、荧光光谱、色坐标等研究了所制备荧光粉的结构、形貌和发光性能。光电子能谱数据验证了合成样品的离子掺杂量。荧光光谱测试表明,Y_2SiO_5∶Eu~(3+)监测光谱呈现200nm~300nm的宽带吸收峰和Eu3+的系列吸收峰。在253nm紫外光激发下,Y_2SiO_5∶Eu~(3+)材料的发射光谱为一个多峰谱,主峰分别为5D0→7F1(591nm)、5D0→7F2(616nm)的发光峰。当Eu3+掺杂物质的量大于24%时,出现了浓度猝灭现象。通过色坐标图可知,当Eu3+掺杂量为24%时,荧光粉的色坐标(0.503,0.366)与标准的红光色坐标接近,表明Y_2SiO_5∶Eu~(3+)是很好的近紫外光激发下的红色荧光粉。  相似文献   

15.
采用高温固相法合成La_(2-x-y)MgTiO_6:xBi~(3+)和La1.8-yMgTiO6:0.2Bi~(3+),yEu~(3+)系列荧光粉,用X射线衍射对其物相进行表征,测试荧光粉的荧光光谱和寿命,研究Bi~(3+)和Eu~(3+)掺杂量和发光强度之间的关系,以及Bi~(3+)和Eu~(3+)之间的能量传递机理和能量传递效率。结果表明:所有合成的掺杂荧光粉均为单相物质;La_(1.8-y)MgTiO_6:0.2Bi~(3+),yEu~(3+)显示出Bi~(3+)的蓝光发射和Eu~(3+)的特征红光发射;当y=0.2时,La_(1.6)MgTiO_6:0.2Bi~(3+),0.2Eu~(3+)的能量传递效率最大,为19.2%;能量传递机理为d-d相互作用。改变Eu~(3+)的浓度可以得到从蓝光到橙红光颜色可调的荧光粉。La_(1.6)MgTiO_6:0.2Bi~(3+),0.2Eu~(3+)的色坐标为(0.5385,0.2736)。  相似文献   

16.
采用高温固相法制备了NaY(WO_4)_2:xEu~(3+)(x=10%,15%,19%,21%,25%)红色荧光粉,并对此荧光粉的结构及发光性能进行了研究。研究结果表明,样品在用λ_(ex)=393 nm激发时,在λ=617 nm处得到了发光光谱。XRD结果表明,Eu~(3+)掺杂浓度达到25%(摩尔分数)时,仍然能够形成纯相的NaY(WO_4)_2:Eu~(3+)多晶粉末。随着Eu~(3+)浓度的增大,Na(WO_4)_2:Eu~(3+)光发射强度逐渐增大,当Eu~(3+)浓度为19%时,发光强度达到最大,随后出现浓度猝灭。  相似文献   

17.
采用高温固相法合成了Eu~(3+)激活的Ba_3La_6(SiO_4)_6红色荧光粉并对其发光性质进行了研究。XRD谱显示,合成样品为纯相Ba_3La_6(SiO_4)_6晶体。样品的激发光谱由一系列宽谱组成,峰值分别位于300、364、384、395、416和466nm,其激发主峰位于395nm。在395nm激发下,荧光粉在619nm(~5D_0→~7F_2)处有很强的发射。研究了不同Eu~(3+)掺杂浓度对样品发射光谱的影响。结果显示,随Eu~(3+)掺杂量的增大,发光强度先增大后减小。Eu~(3+)掺杂摩尔分数为13%时,出现浓度淬灭,其浓度淬灭机理为电偶极-电偶极相互作用。研究了不同Bi~(3+)掺杂量对Ba_3La_6(SiO_4)_6:Eu~(3+)发射光谱及色坐标的影响。Bi~(3+)掺杂样品中存在Bi~(3+)→Eu~(3+)的能量传递。  相似文献   

18.
采用高温固相法合成了不同助溶剂掺杂的CaO:Eu~(3+)荧光粉体。在209nm激发下,得到640nm较强烈的红光发射峰,归属于Eu~(3+)离子~5D_0~7F_2电子跃迁。并研究了添加助溶剂对荧光粉发光强度的改变,当添加助溶剂NH4Cl后,荧光粉体的发光强度并没有得到提高,反而使得荧光粉性能变差,而当添加H_3BO_3助溶剂后,荧光粉的发光强度得到10%左右的提升;最后研究了煅烧温度对荧光粉体发光性能的影响,样品在1000℃煅烧后表现出来的发光强度最差,而在1100℃煅烧后,荧光粉的发光性能达到最高。  相似文献   

19.
采用固相法合成了白光LED用红色Na Gd_(1–x–y)Eu_xSm_y(WO_4)_2(x=0.05,0.10,0.15,0.20,0.25,0.30;y=0,0.01,0.02,0.03,0.04)系列荧光粉。分别采用X射线衍射、扫描电子显微镜、发光光谱等测试手段分析了粉体样品的物相、形貌与发光性质。结果表明:Na Gd(WO_4)_2的最佳合成温度为1 000℃,且在1 000℃合成的粉体的颗粒尺寸比较均匀,平均粒径在2~3μm左右。Na Gd_(1–x–y)Eu_xSm_y(WO_4)_2系列荧光粉均可被近紫外光(393 nm)和蓝光(464 nm)有效激发,其最强发射峰位于615 nm处,属于Eu~(3+)的~5D_0→~7F_2电偶极跃迁。并且由于Sm~(3+)和Eu~(3+)离子之间存在着有效的能量传递,使得Sm~(3+)的掺入能有效的增加Eu~(3+)的发光强度,Eu~(3+)和Sm~(3+)的最佳掺杂量分别为25%(摩尔分数)和2%。  相似文献   

20.
采用高温固相法,通过控制反应温度和Eu~(3+)掺杂量,制备Ba Al_2O_4:Eu直接白色荧光粉。以电荷补偿模型为基础讨论了自还原机理。当合成温度为1 200℃、Eu~(3+)掺杂量为12%(摩尔分数)时,荧光粉颜色趋近于白光,色坐标位于(0.36,0.38)。通过X射线光电子能谱、发射和激发光谱以及漫反射光谱,研究了Ba Al_2O_4:Eu荧光粉的发光性能。结果表明:荧光粉中存在2个发光中心,分别与Ba的2种格位相对应。Eu2+和Eu~(3+)共存于基质中,说明Eu~(3+)在空气中发生自还原反应。主峰位于500 nm处的发射宽谱符合Eu2+的4f 65d–4f 7跃迁,596、619、655以及709 nm处的发射峰分别对应Eu~(3+)的4f–4f中5d0–7fJ(J=1,2,3,4)特征发射跃迁,发射峰以619 nm处的5d0–7f2电偶极跃迁为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号