首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
To determine the role of insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) in the development of the pancreas, and specifically of the islets of Langerhans, we have examined the cellular distribution and developmental changes in the expression of IGFs and IGFBPs in the pancreas of the fetal and neonatal rat between 19.5 days of gestation and postnatal day 28. This represents a period of substantial growth and restructuring of the beta cell component in islets of this species. IGF-I, IGF-II, and IGFBPs-1 to -6 mRNAs were localized by in situ hybridization, and peptides by immunohistochemistry, in histological sections. IGF-II mRNA was highly expressed in islet cells and some ductal epithelial cells in late fetal and early neonatal life, but was barely detectable by postnatal day 28. IGF-II peptide showed a similar distribution. IGF-I mRNA was barely detected in the fetus or neonate and was localized predominantly in the ductal and acinar tissues after postnatal day 7. IGF-I immunoreactivity was associated with some islet cells in the fetus and neonate, suggesting an endocrine rather than a paracrine source. We performed co-localization studies to assess whether the distribution of IGFs within the pancreas might be due to a sequestration by locally produced IGFBPs. The presence of mRNAs for both IGFBPs-1 and -2 was minimal in the pancreas prior to postnatal day 7, although subsequently IGFBP-1 mRNA was seen in islet cells, while IGFBP-2 mRNA was localized in both islets and acinar tissues. In contrast, both IGFBPs-1 and -2 immunoreactivities were identified in islets from late fetal life, suggesting a circulatory source for these IGFBPs during early pancreatic development. IGFBPs-3 to -5 mRNAs and immunoreactivities were identified within islet cells throughout fetal and neonatal life, with IGFBPs-3 and -5 being mainly associated with the alpha cell-rich islet mantle. The results show a compartmentalization of IGFs within pancreatic tissue, reflecting both paracrine and endocrine sources. The localization and action of IGFs in pancreas likely involves sequestration and distribution by endogenous as well as circulating IGFBPs.  相似文献   

2.
The patterns of expression insulin-like growth factor-II (IGF-II) and IGF-binding protein-1 (IGFBP-1) mRNAs were compared between term human and rhesus monkey placenta using in situ hybridization histochemistry. Since IGFs and IGFBPs are paracrine factors, the identification of the sites of synthesis of the IGFs and their binding proteins indicate the potential sites of biological action. In both species, IGF-II mRNA was found in highest abundance in the extravillous cytotrophoblasts. The major difference was observed in placental villi. In the human placenta, IGF-II mRNA was expressed in the chorionic mesoderm of the placental villi, whereas, in the rhesus placenta, it was expressed in the syncytiotrophoblasts and not in the chorionic mesoderm. In both species, IGFBP-1 mRNA was expressed only in the decidua. Therefore, the pattern of expression of IGFBP-1 mRNA in the maternal decidua is similar between rhesus monkey and human placenta, but that of IGF-II mRNA in the fetal placental villi is different. These data suggest that the IGF-II-IGFBP-1 interaction in the paracrine regulation of placental growth and/or function in the rhesus monkey and human placentae may have similarities and differences.  相似文献   

3.
CONCLUSION: Serum levels of IGF-I, IGF-II, and IGFBP-3 are not elevated in pancreatic cancer and do not appear to have a significant role in glucose homeostasis in this group of patients. BACKGROUND: The insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) have been implicated recently in the pathogenesis of pancreatic cancer, and increased serum levels of IGF-I or IGF-II have been reported previously in a number of other gastrointestinal malignancies. METHODS: Serum levels of IGF-I, IGF-II, and IGFBP-3 were measured by RIA in 20 patients with pancreatic cancer and 20 age-matched healthy control subjects and correlated with serum glucose, C-peptide, and glucose tolerance. RESULTS: No significant difference was observed in serum levels of IGF-I (13 vs 17 nmol/L, respectively), IGF-II (0.67 vs 0.91 U/mL), or IGFBP-3 (2.3 vs 2.3 mg/L) between the two groups of patients. Twelve (60%) patients had impaired glucose tolerance, but no correlation was observed between the serum levels of the IGFs and glucose tolerance.  相似文献   

4.
5.
The placenta is recognized as an important determinant of fetal growth rate, yet the factors regulating its proliferation remain poorly understood. Components of the insulin-like growth factor (IGF) system were localized in the ovine uterus using in situ hybridization between days 13-55 of gestation, the period of implantation and placentome formation. IGF-II messenger RNA (mRNA) expression was intense in the fetal mesoderm, particularly at the tips of the invading placentome villi. Moderate levels of IGF-II mRNA were also observed in the maternal caruncular stroma. In contrast, expression of IGF-1 mRNA was low (compared to estrous levels) and ubiquitous decreasing as gestation advanced. IGF-binding protein-2 (IGFBP-2 mRNA was not detected until day 29 of gestation, when it appeared restricted to the dense caruncular-like stroma lining the luminal epithelium, colocalized with IGFBP-4. High concentrations of IGFBP-4 mRNA expression were also found in the placentome capsule. IGFBP-3 mRNA expression was intense in the luminal epithelium between days 13-15 of gestation. Subsequently, levels in this region dropped significantly (P < 0.001). IGFBP-3 mRNA expression was also high in the maternal placentome villi, where photographic emulsions localized expression to blood vessel walls. Peak expression of IGF type 1 receptor (IGF-1R) mRNA was found in the deep uterine glands, with intermediate expression in the superficial uterine glands. Moderate expression of IGF-1R mRNA was initially recorded in caruncular stroma, but levels in this region decreased significantly (P < 0.001) to below the detection limit of the technique after interdigitation by the fetal allantochorion. Furthermore, IGF-1R mRNA could not be detected in any fetal placentome tissue. This study, therefore, has established the pattern of expression of the IGFs, IGF-1R, and three of the IGFBPs during establishment of the ovine placenta. It will form the basis for future work to investigate how this system is regulated and to determine the role of the IGFs in placental development.  相似文献   

6.
We have extensively studied the effect of hypophysectomy on the growth and development of tissues in the fetal pig. However, little is known about the effect of hypophysectomy on tissue levels of insulin-like growth factors I and II (IGF-I and -II) and how these growth factors are affected by T4 replacement. Fetal pigs were hypophysectomized (Hypox) at 70 days of gestation, and pellets containing 15 mg T4 were implanted into the lateral musculature of the hind limb at either 70 or 90 days of gestation. Fetuses were removed at either 90 or 105 days of gestation, respectively. Control (non-Hypox), Hypox, and T4 (Hypox-T4) fetal weights were similar at 90 days, but Hypox-T4 weighted less than control and Hypox fetuses at 105 days. Hypophysectomy decreased levels of serum T4, LH, cortisol, and IGF-I (105 days) when compared with controls. Heart and liver (105 days and 90 days) and fat, muscle, and kidney (90 days) IGF-I levels were lower in Hypox fetuses when compared with controls. Hypophysectomy decreased concentrations of IGF-II in only 105-day fetal kidneys. Hypophysectomy decreased serum levels of IGF binding protein 1 (IGFBP-1) (90 days) and IGFBP-2 (105 days) and increased IGFBP-4 (105 days) in comparison with control. T4 treatment of Hypox fetuses increased serum concentrations of T4 and IGF-I over Hypox levels at both 90 and 105 days gestation. Cortisol levels remained decreased in the T4-treated fetuses. Levels of IGF-I in the heart (90 and 105 days) and liver (90 days) of Hypox fetuses were increased by T4 treatment. T4 did not effect tissue IGF-II levels when compared with Hypox. T4 increased serum IGFBP-1, -2, and -4 levels over Hypox values. We suggest that T4 enhances production of IGF-I (as opposed to IGF-II), which in turn mediates some of T4's capability to enhance tissue development in the fetal pig.  相似文献   

7.
Disproportionate fetal and placental growth are associated with the development of hypertension in the rat and human. Here we report differences in fetal, neonatal, and placental growth, and in metabolism and endocrinology, between the spontaneously hypertensive rat (SHR), a genetic model for human essential hypertension, and the control Wistar-Kyoto (WKY) strain. Gestation in SHR (23 d) was longer than in WKY by 20 h. Body weights were lower in the SHR from fetal d 16 to 20 and on postnatal d 15. However, on fetal d 22 and postnatal d 1, there was no significant difference in body weight between SHR and WKY. SHR placentas were larger than those of WKY at d 20, and by term there was a difference of 30% (p < 0.01). Other indices of disproportionate growth were hypertrophy of the fetal heart and kidney and decreased ponderal index in the SHR neonate. Blood glucose in SHR fetuses was lower than in WKY fetuses (p < 0.05), whereas blood lactate was higher (p < 0.05) and fetal hematocrit was reduced (p < 0.001). These findings suggest undernutrition and placental insufficiency may occur in SHR fetuses. Plasma IGF-II was increased on the last day of gestation in both strains, whereas IGF-I was unaltered. Fetal liver IGFBP-2 mRNA and plasma IGFBP-2 levels were reduced in SHR on fetal d 20 and 22 (p < 0.01). Differences in growth and endocrine and metabolic parameters suggest abnormal perinatal physiology in the SHR, which may influence the later development of hypertension.  相似文献   

8.
Hepatitis C-associated osteosclerosis (HCAO) is a rare disorder characterized by a marked increase in bone mass during adult life. Despite the rarity of HCAO, understanding the mediator(s) of the skeletal disease is of great interest. The IGFs-I and -II have potent anabolic effects on bone, and alterations in the IGFs and/or IGF-binding proteins (IGFBPs) could be responsible for the increase in bone formation in this disorder. Thus, we assayed sera from seven cases of HCAO for IGF-I, IGF-II, IGF-IIE (an IGF-II precursor), and IGFBPs. The distribution of the serum IGFs and IGFBPs between their ternary ( approximately 150 kD) and binary (approximately 50 kD) complexes was also determined to assess IGF bioavailability. HCAO patients had normal serum levels of IGF-I and -II, but had markedly elevated levels of IGF-IIE. Of the IGFBPs, an increase in IGFBP-2 was unique to these patients and was not found in control hepatitis C or hepatitis B patients. IGF-I and -II in sera from patients with HCAO were carried, as in the case of sera from control subjects, bound to IGFBP-3 in the approximately 150-kD complex, which is retained in the circulation. However, IGF-IIE was predominantly in the approximately 50-kD complex in association with IGFBP-2; this complex can cross the capillary barrier and access target tissues. In vitro, we found that IGF-II enhanced by over threefold IGFBP-2 binding to extracellular matrix produced by human osteoblasts and that in an extracellular matrix-rich environment, the IGF-II/IGFBP-2 complex was as effective as IGF-II alone in stimulating human osteoblast proliferation. Thus, IGFBP-2 may facilitate the targeting of IGFs, and in particular IGF-IIE, to skeletal tissue in HCAO patients, with a subsequent stimulation by IGFs of osteoblast function. Our findings in HCAO suggest a possible means to increase bone mass in patients with osteoporosis.  相似文献   

9.
The insulin-like growth factors (IGFs) are mitogenic polypeptides which circulate bound to a series of at least six binding proteins (IGFBPs). An increasing body of evidence supports a major role for the IGF in the control of human fetal growth although normal values in the human fetal circulation have not been established. In order to provide an accurate reflection of fetal IGFs and IGFBPs in utero, we have sampled fetal blood direct from the umbilical cord at 18-38 weeks of gestation using the technique of cordocentesis. We have measured IGF-I, IGF-II and IGFBP 1-3 in 91 fetuses in order to establish concentrations for these parameters in the second and third trimesters of human pregnancy.  相似文献   

10.
Previous studies in a weanling rat model indicated that dietary calcium depletion not only stimulated osteoclastic resorption but also inhibited bone formation. The present study sought to test whether the depletion-associated inhibition of bone formation is related to a reduction in serum insulin-like growth factor-I (IGF-I) and/or an increase in its binding proteins (IGFBPs). Twenty male weanling rats were divided into two weight-matched groups. The study group was subjected to a semisynthetic diet deficient in calcium (0.02% calcium) for 28 days, while the control group was pair-weighed on the same diet but containing 0.62% calcium. After the depletion phase, all rats were fed the same calcium-containing diet for an additional 14 days. Serum samples were obtained from each animal on a weekly basis and assayed for IGF-I and IGFBPs. During depletion, there was no statistically significant difference in serum IGF-I level between the study group and the control group. In contrast, the study group showed a statistically significant increase in several serum IGFBPs with apparent molecular size of 30-38 kD (IGFBP-3), 26-28 kD (IGFBP-1, -2, -5, and/or -6), and 24-25 kD (IGFBP-4), respectively, compared to the control group. There was no difference in nutritional intakes between the two groups of rats during depletion. During repletion, there was also no significant difference in serum IGF-I level between the control and study group. However, during the first 7 days of repletion, serum IGFBP-3 and the 26-28 kD IGFBP of the study group was significantly less than those of the control group, which then returned to the control level after 2 weeks of repletion. In summary: (1) calcium depletion in weanling rats increased several serum IGFBPs without an effect on IGF-I; and (2) calcium repletion induced an acute reduction in serum IGFBP-3. In conclusion, these findings represent the first evidence that the depletion-related inhibition of bone formation in the rat may be associated with an increase in several serum IGFBPs, which may act to inhibit the osteogenic actions of IGFs.  相似文献   

11.
OBJECTIVE: The aim of this investigation was to study the effect of relatively high dose IGF-I therapy given for several months, on serum levels of IGF-I, IGF-II and IGFBP-3, and on IGF-I pharmacokinetics in patients with growth hormone insensitivity due to GH receptor dysfunction. DESIGN AND PATIENTS: Two adolescent subjects from Ecuador were treated with recombinant IGF-I at a dosage of 120 micrograms/kg s.c. twice daily, in combination with a GnRH analogue for 8 months. MEASUREMENTS: Serum was sampled at baseline and at 3-8 months, for determination of IGF-I, IGF-II and IGFBP-3 by radioimmunoassay, and for evaluation of IGFBPs and IGFBP-3 protease activity by Western ligand blot and protease assay, respectively. RESULTS: Peak serum IGF-I levels ranged from 272 to 492 micrograms/l. Mean serum IGF-II levels were decreased concurrently with the increase in IGF-I. Serum IGFBP-3 levels failed to rise with prolonged IGF-I treatment. There was no apparent change in the half-life of IGF-I during the treatment period. CONCLUSIONS: IGF-I administration does not increase serum levels of IGFBP-3 or significantly alter IGF-I pharmacokinetics.  相似文献   

12.
Accumulating evidence indicates that the insulin-like growth factors (IGFs) can act as neurotrophic factors. A family of at least six IGF binding proteins (IGFBPs) has been characterized. The IGFBPs prolong the half-life of IGFs in plasma and may modulate IGF action in a cell- or tissue-specific fashion. Two recently characterized IGFBPs, IGFBP-4 and -5, have been shown by northern blot hybridization to be expressed in rat brain, but their cellular sites of synthesis are poorly characterized. Because IGFBP-4 and IGFBP-5 could potentially modulate IGF actions in the brain, we used in situ hybridization histochemistry and 35S-labeled IGFBP-4 and IGFBP-5 riboprobes to localize sites of IGFBP-4 and -5 mRNA expression in adult rat brain. The two IGFBP mRNAs are abundantly expressed within discrete regions of brain. The expression patterns of the two genes are largely nonoverlapping. Notably, IGFBP-4 mRNA is highly expressed within hippocampal and cortical areas, whereas IGFBP-5 mRNA is not detected above background in these areas. Within the hippocampus, abundant IGFBP-4 mRNA expression is detected in pyramidal neurons of the subfields of Ammon's horn and the subiculum and in the granule cell layer of the anterior hippocampal continuation. In the cortex, IGFBP-4 mRNA is widely expressed in most areas and layers. In contrast, IGFBP-5, but not IGFBP-4, mRNA is detected within thalamic nuclei, leptomeninges, and perivascular sheaths. The distinct expression patterns of IGFBP-4 and -5 mRNAs within the brain suggest that these IGFBPs may modulate paracrine/autocrine actions of the IGFs in discrete brain regions or compartmentalization of the IGFs within the brain.  相似文献   

13.
The kinetics of peritoneal transport of insulin-like growth factor (IGF) system-related proteins during dialysis is not well characterized. We studied temporal changes in dialysate and serum concentrations of IGF-I and IGF-II as well as IGF binding protein (BP)-1, -2, and -3 in ten children with end-stage renal disease (ESRD) undergoing continuous cycling peritoneal dialysis (CCPD) during a 4-h peritoneal equilibration test (PET). Dialysate concentrations of IGF-I, IGF-II, and all three IGFBPs demonstrated a time-dependent increase during PET. Despite their transport, the serum concentrations of these proteins did not change significantly during the PET. Dialysate/serum ratios for IGF-I, IGF-II, and IGFBP-1, -2, and -3 were significantly increased at 2 h and increased further at 4 h, at which time values averaged 1.3+/-0.2%, 3.1+/-0.5%, 6.2+/-1.0%, 2.4+/-0.2%, and 1.3+/-0.2% of serum levels, respectively. The transperitoneal clearance (microl/min per 1.73 m2) of the three IGFBPs was inversely related to both their molecular weight and plasma concentration. However, peritoneal clearance of IGF-I and -II was similar to that of the larger and more-abundant IGFBP-3. Mass transfer rates (microg/h per 1.73 m2) for the IGFs and their binding proteins were directly proportional to their prevailing plasma concentration. Based on estimates of mass transfer, only a small molar excess of IGFBPs was removed from the circulation relative to the combined molar concentration of IGF-I and IGF-II. Hence, it seems unlikely that any beneficial effect of CCPD on growth in children with ESRD is mediated via a preferential loss of IGFBPs into the dialysate fluid.  相似文献   

14.
The IGFs (-I and -II) are normally found in serum and other extracellular fluids complexed to specific binding proteins (IGFBPs). While several IGFBPs have been identified in vitreous and aqueous humors, the major serum carrier of IGF, IGFBP-3, is notably absent from these fluids. To determine if this paucity could be due to an IGFBP-3 proteinase (IGFBP-3ase), samples of bovine vitreous or aqueous humor were mixed with serum and incubated at 37 degrees C for 4 h followed by western ligand blotting. In these experiments, a distinct loss of the 46 kDa band representing IGFBP-3 was observed while other bands present at 35, 28 and 25 kDa were unaltered. The IGFBP-3ase activity is temperature sensitive, has a pH optimum of about 8.0 and is inhibited by EDTA. Acid treatment of serum to remove endogenously bound IGF does not affect the specificity or activity of the IGFBP-3 proteinase. Size exclusion chromatography of bovine aqueous indicates an approximate molecular weight of 260 kDa. Incubation of recombinant IGFBP-3 or serum with partially-purified IGFBP-3ase results in the appearance of low molecular weight fragments of approximately 30 kDa. These fragments are undetectable by western ligand blotting but are readily visualized using an IGFBP-3 specific antibody. Comparison of normal and diabetic vitreous humor reveals the presence of an increased amount of IGFBP-3 proteolytic fragments in the diabetic as compared to control. These findings indicate the presence of a IGFBP-3 proteinase in aqueous and vitreous humors that may be important in regulating ocular homeostasis.  相似文献   

15.
Insulin-like growth factor (IGF)-I and IGF-II are expressed at biologically effective levels by bone cells. Their stability and activity are modulated by coexpression of IGF binding proteins (IGFBPs). Secreted IGFBPs may partition to soluble, cell-associated, and matrix-bound compartments. Extracellular localization may sequester, store, or present IGFs to appropriate receptors. Of the six IGFBPs known, rat osteoblasts synthesize all but IGFBP-1. Of these, IGFBP-3, -4, and -5 mRNAs are induced by an increase in cAMP. Little is known about extracellular IGFBP localization in bone and nothing about IGFBP expression by nonosteoblastic periosteal bone cells. We compared basal IGFBP expression in periosteal and osteoblast bone cell cultures and assessed the effects of changes in cAMP-dependent protein kinase A or protein kinase C. Basal IGFBP gene expression differed principally in that more IGFBP-2 and -5 occurred in osteoblast cultures, and more IGFBP-3 and -6 occurred in periosteal cultures. An increase in cAMP enhanced IGFBP-3, -4, and -5 mRNAand accordingly increased soluble IGFBP-3, -4, and -5 and matrix-bound IGFBP-3 and -5 in both bone cell populations. In contrast, protein kinase C activators suppressed IGFBP-5 mRNA, and its basal protein levels remained very low. We also detected low Mr bands reactive with antisera to IGFBP-2, -3, and -5, suggesting proteolytic processing or degradation. Our studies reveal that various bone cell populations secrete and bind IGFBPs in selective ways. Importantly, inhibitory IGFBP-4 does not significantly accumulate in cell-associated compartments, even though its secretion is enhanced by cAMP. Because IGFBPs bind IGFs less tightly in cell-bound compartments, they may prolong anabolic effects by agents that increase bone cell cAMP.  相似文献   

16.
We examined the ontogeny of mRNA levels of IGF-I and -II, IGF type 1 (IGFI-R) and type II receptors (IGFII-R), IGF binding protein-1 and -3 (IGFBP-1 and -3), GH receptor (GHR), and tissue concentrations of IGF and IGFBP in the pancreas of pigs. Tissues were collected from fetuses at 90 and 110 d of gestation and from pigs at 1, 21, 90 and 180 d of age. Northern blots were performed using total RNA hybridized with 32P-labeled cDNA probes (human IGF-I and human IGFI-R) and cRNA probes (rat IGF-II, human IGFII-R, human IGFBP-1, pig IGFBP-3, and pig GHR). There were two accelerated growth stages of the pancreas: the first one at 90 d of fetal life, which is characterized by cell hyperplasia (high ratio of DNA to body weight), and the second one at postnatal 90 d, which is attributed to cell hypertrophy (high ratios of pancreatic weight, RNA, and protein to DNA). The level of IGF-II mRNA and its tissue concentration were predominant during fetal life and low thereafter. The IGF-I mRNA level was high during fetal and early postnatal life and decreased thereafter. Messenger RNA levels of IGFI-R, IGFBP-3, and GHR and concentrations of IGFBP-1 and -2 were abundant during fetal and early postnatal life. In conclusion, IGF may be involved in various physiological periods of pancreatic development in pigs.  相似文献   

17.
The human IGFBP family consists of at least seven proteins, designated as IGFBP-1, -2, -3, -4, -5, -6, and-7. IGFBPs 1-6 bind IGF-I and IGF-II with high affinity whereas IGFBP-7, a newly identified IGFBP, binds IGFs with lower affinity and constitutes a low-affinity member of the IGFBP family. IGFBPs serve to transport the IGFs, prolong their half-lives, and modulate their biological action. At the cellular level, IGFBPs can either potentiate or inhibit the mitogenic effects of IGFs, depending upon cell types and IGFBP species (IGF-dependent action of IGFBPs). However, recent studies have indicated that IGFBPs, especially IGFBP-3, potently inhibit breast cancer cell growth in an IGF-independent manner. The IGF-independent action of IGFBP-3 requires interaction with cell-surface association proteins, presumably putative IGFBP-3 specific receptors, and is responsible for growth inhibitory action of the known growth suppressing factors such as TGF-beta, retinoic acid, and antiestrogens in breast cancer cells. Thus, IGFBP-3 appears to be a major factor in a negative control system involved in regulating human breast cancer cell growth in vitro. IGFBP-7, representing a low affinity IGFBP, appears to function as an IGF-independent cell growth regulator in breast cancer cells. Overall structural similarity between IGFBP-7 and classical high affinity IGFBPs 1-6 suggests that the mechanisms of action and signaling pathways used by IGFBP-7 may provide insight into the IGF-independent actions of the high affinity IGFBPs. A fuller understanding of the IGF-independent action of IGFBPs will allow us to understand how the growth of neoplastic cells can be modulated by the IGF/IGFBP system, and how other growth factors or pharmacological agents can interface with this system.  相似文献   

18.
Retinopathy is the most frequent microangiopathic complication in diabetes. Many circulating hormones and locally produced mitogenic factors have been involved. Bovine retinal endothelial cells (BRECs) were cultured to investigate if insulin, insulin-like growth factors (IGFs), IGF binding proteins (IGFBPs), and a chronic high-glucose condition could control endothelial cell growth. Specific IGF-I receptors with two binding sites with high (Kd 0.03 nmol/L) and low (Kd 1.3 nmol/L) affinity were found when analyzing families of displacement curves between IGF-I versus IGF-I and IGF-I versus insulin. However, IGFs failed to be mitogenic factors in these cells. This could be explained by an inhibitory effect due to the presence of specific IGFBPs with a molecular weight between 24 and 43 kd. Using Western blot and immunoblot analysis, Northern blot study, and specific radioimmunoassay (RIA), these IGFBPs have been identified as IGFBP-3, -2, -5, and -4. Insulin, which does not bind to IGFBPs, was a potent mitogenic factor in these cells at a high concentration (10 nmol/L), suggesting a cross-reaction to IGF-I receptor. These IGFBPs, except the 24-kd form (IGFBP-4), were modulated by both IGF-I and IGF-II, with a maximum effect at 100 and 10 nmol/L, respectively. This regulation on IGFBPs was IGF-I receptor-independent. In fact, (1) IGFBP mRNA levels were not modified after stimulation with 100 nmol/L IGF-I, (2) 100 nmol/L IGF plus an equimolar concentration of alpha IR3 did not affect IGFBP production, (3) Des(1-3)IGF-I had no effect on IGFBP modulation, whereas at 10 nmol/L it enhanced BREC thymidine cell incorporation, and (4) 100 nmol/L insulin, which at this concentration can cross-react with the IGF-I receptor, did not modify the IGFBP pattern. Chronic exposure (4 weeks) of BRECs to 25 mmol/L glucose had no effect on cell growth. However, after 3 weeks, we observed a decreased IGFBP detection, and addition of 100 nmol/L IGF-I did not change IGFBP levels and did not modify cell growth. Conversely, BRECs grown in regular medium for 4 weeks showed increased IGFBP production. In conclusion, we showed that conditions mimicking hyperinsulinemia, rather than high levels of IGFs, could regulate BREC growth and that the IGF-I analog, Des(1-3), even with reduced affinity for IGFBPs but in part capable of binding to IGFBP-3, significantly stimulated BRECs growth only at 10 nmol/L. IGF actions are modulated by locally produced endothelial IGFBPs, and in turn, these endothelial IGFBPs are regulated, via in IGF-I receptor-independent mechanism, by the presence of IGFs. The autoregulatory IGF system together with the direct glucose modulation of IGFBPs could contribute in diabetic subjects to the retinal endothelial cell growth and metabolism through local changes in IGF bioavailability.  相似文献   

19.
Insulin-like growth factor binding protein (IGFBP) secretory profiles were determined for vascular smooth muscle cells (VSMC) derived from bovine aorta and human aorta, pulmonary artery, and coronary artery. The bovine cells produced IGFBP-4, IGFBP-3, and an IGFBP-3 protease. IGF-I stimulated messenger RNA (mRNA) and media levels of IGFBP-3. The human cells produced IGFBP-3, IGFBP-4, and IGFBP-3 and IGFBP-4 proteases. The three human cells also produced a 30K IGFBP, shown to be IGFBP-6, based on increased affinity for IGF-II vs. IGF-I, size decrease when treated with O-glycanase, but not N-glycanase, reactivity with IGFBP-6 antiserum, presence of a 1.3-kilobase pair mRNA that hybridized to IGFBP-6 specific complementary DNA, and N-terminal amino acid sequence corresponding to IGFBP-6. In the human cells, IGF-I increased media levels of IGFBP-3 through stimulation of IGFBP-3 mRNA and dissociation of cell bound IGFBP-3, and decreased IGFBP-4 via potentiation of IGFBP-4 proteolysis. Neither the bovine nor the human aorta VSMC produced sufficient IGFBP-2 or IGFBP-2 mRNA to be detected by ligand blot and Northern analysis, as previously reported for porcine and rat aorta smooth muscle cells. The variable expression of IGFBPs and IGFBP proteases by VSMC are likely to contribute to differential vascular reactivity to the IGFs in larger arterial blood vessels.  相似文献   

20.
The insulin-like growth factor (IGF)-binding proteins (IGFBPs) carry IGFs in serum and regulate their activity and bioavailability. The main IGFBP in serum, IGFBP-3, is known to form a 150-kDa complex with IGFs and the acid-labile subunit (ALS). We investigated the binding of IGFBP-3 to additional association proteins in human serum (IGFBP-3 APs). Ligand blots, column chromatography, and affinity cross-linking experiments revealed the specific binding of IGFBP-3 to at least three novel serum proteins. These techniques demonstrated the presence of proteins with molecular masses of 70, 100, and 150 kDa that bind IGFBP-3 with high affinity. Serum ALS migrated separately (at 88 kDa) from the novel IGFBP-3 APs (as evident by Western immunoblot), and bound IGFBP-3 weakly (by reverse ligand blots). We also demonstrated that large amounts of one of the IGFBP-3 APs and small amounts of ALS were coimmunoprecipitated with IGFBP-3 from human serum. Similar to ALS, these IGFBP-3 APs are acid labile and lose their IGFBP-3 binding capacity after exposure to low pH. We conclude that there are several serum proteins in addition to ALS and IGFs that bind IGFBP-3 with high affinity. These IGFBP-3 APs may serve as an additional reservoir of IGFBP-3 or modulate its functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号