首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, miscibility and crystallization behavior of polyvinylidene fluoride (PVDF) and its blends with hyperbranched polyester (HBPE, 0 to 50 wt.-% of HBPE in PVDF) are investigated by means of DSC and FTIR techniques. Among the varying blend compositions, PVDF/HBPE (100/0 and 90/10) blend ultrathin film samples were subjected to thermal annealing at different temperatures (30–200 °C) in order to examine and compare their crystallization behavior. From FTIR data, the all-trans band (A1) at ca. 1280 cm−1 corresponding to the changes in ferroelectric β-crystalline phase for both the samples exhibits higher absorption intensity upon annealing at 90 °C, well below their melting temperature range (Tm∼160 °C), whereas, the sample melt-annealed at 210 °C exhibit reduced A1 absorption intensity, which is attributed to the crystalline transformation from ordered ferroelectric phase into the disordered amorphous phase. Quantitative data from Factor analysis revealed the existence of higher ferroelectric β-crystalline phase content in PVDF/HBPE (90/10) blend ultrathin film sample than in commercially available PVDF and PVDF/TrFE (72/28) ultrathin film samples, which exemplifies the importance of this study. The enhanced ferroelectric characteristics exhibited by the PVDF/HBPE (90/10) blend ultrathin film samples can be well-suited for electronic applications such as non-volatile memory devices, sensors, etc.  相似文献   

2.
Kumiko Asai  Kohji Tashiro 《Polymer》2008,49(19):4298-4306
To understand the effect of the nano-filler particles on the crystallization kinetics and crystalline structure of poly(vinylidene fluoride) (PVDF) upon nano-composite formation, we have prepared PVDF/organically modified layered titanate nano-composite via melt intercalation technique. The layer titanate (HTO) is a new nano-filler having highly surface charge density compared with conventional layered silicates. The detailed crystallization behavior and its kinetics including the conformational changes of the PVDF chain segment during crystallization of neat PVDF and HTO-based nano-composite (PVDF/HTO) have been investigated by using differential scanning calorimetric, wide-angle X-ray diffraction, light scattering, and infrared spectroscopic analyses. The neat PVDF predominantly formed α-phase in the crystallization temperature range of 110-150 °C. On the other hand, PVDF/HTO exhibited mainly α-phase crystal coexisting with γ- and β-phases at low Tc range (110-135 °C). A major γ-phase crystal coexists with β- and α-phases appeared at high Tc (=140-150 °C), owing to the dispersed layer titanate particles as a nucleating agent. The overall crystallization rate and crystalline structure of pure PVDF were strongly influenced in the presence of layered titanate particles.  相似文献   

3.
syndiotactic Polystyrene (sPS) glass crystallizes into the α form when it is heated above the glass transition temperature (Tg, about 100 °C). sPS can be crystallized also into the δ form in the solvent atmosphere at room temperature. In order to trace the structural evolution process, the time-resolved infrared spectral measurements have been performed in the isothermal crystallization from the glass to α form and in the solvent-induced crystallization from the glass to δ form at the various temperatures. Absorbance of crystallization-sensitive infrared bands was plotted against time, from which the crystallization kinetics were analyzed on the basis of Avrami equation: X(t)=1−exp[−(kt)n] where X is a normalized crystallinity, n is an index, k is a rate constant, and t is a time. The isothermal crystallization was investigated also by carrying out the temperature jump experiment of DSC thermograms, giving almost the same results as the infrared spectral measurements. The Avrami index n was 2-5 depending on the crystallization temperature (Tc). The k was also dependent on the Tc, about 10−1-10−4 s−1 and could be fitted reasonably by the equation of crystallization kinetics. An extrapolation of the k vs Tc plot to the negligibly small k value allowed us to predict the temperature at which no crystallization should occur, ca. 100 °C, in good agreement with the observed Tg value. On the other hand, the solvent-induced crystallization was investigated for the first time at the various temperatures from 50 to 9 °C by the time-resolved measurement of infrared spectra. Compared with the experiment at room temperature, the crystallization was highly accelerated at 40-50 °C, while the crystallization rate was reduced remarkably at such a low temperature as 9 °C. The time dependence of infrared absorbance was analyzed for the crystallization-sensitive bands on the basis of Avrami equation as the first approximation, although the crystallization mechanism was more complicated than the isothermal crystallization case. The logarithm of the k value was found to change almost linearly with temperature and an extrapolation to infinitesimally small k value gave a Tg of about −15 °C. That is to say, the glass transition temperature was estimated to shift remarkably from 100 to −15 °C by absorbing solvent molecules or by a plasticizing effect.  相似文献   

4.
Morphology development during the crystallization of poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) blends was investigated at various crystallization temperatures (TC) by means of time-resolved light scattering measurements and atomic force microscopy (AFM). A coarse spherulite obtained at a high TC of 162 °C was found to be developed with a two-step crystallization process. The ordering in the spherulites (Pr) increased with time at the early stages and then decreased at the later stages. The rate of spherulite growth started to decrease when Pr started to decrease. In contrast, in the compact spherulite obtained at a low TC of 148 °C, Pr decreased monotonously with time while the growth rate was constant. AFM observation revealed that such characteristic crystallization behavior is attributed to the exclusion of PMMA from the crystal growth during the crystallization; i.e., the amount of excluded PMMA becomes larger as the distance from the spherulite center increases and the crystallization temperature rises.  相似文献   

5.
Spherical shape borate-based bioactive glass powders with fine size were directly prepared by high temperature spray pyrolysis. The powders prepared at temperatures between 1200 and 1400 °C had mixed phase with small amounts of fine crystal and an amorphous rich phase. Glass powders with amorphous phase were prepared at a temperature of 1500 °C. The mean size of the glass powders prepared by spray pyrolysis was 0.76 μm. The glass powders prepared at a temperature of 1200 °C had two distinct exothermic peaks (Tc1 and Tc2) at temperatures of 588 and 695 °C indicating crystallization. The glass transition temperature (Tg) of the powders prepared at a temperature of 1200 °C was 480 °C. Phase-separated crystalline phases with spherical shape were observed from the surface of the pellet sintered at a temperature of 550 °C. Crystallization of the pellet was completely occurred at temperatures of 750 and 800 °C. The pellets sintered at temperatures below 700 °C had single crystalline phase of CaNa3B5O10. The pellet sintered at a temperature of 800 °C had two crystalline phases of CaNa3B5O10 and CaB2O4.  相似文献   

6.
J. Kalfus 《Polymer》2007,48(14):3935-3937
Concentration dependence of the storage modulus, E′, was investigated for polyvinylacetate (PVAc) filled with hydroxyapatite (HAP) nanoparticles. The filler volume fraction, vf, varied from 0 to 0.05 and the E′ and loss tangent, tan δ, were measured below neat matrix Tg at −40 °C and above neat matrix Tg at +50 °C at 1 Hz. The Tg determined as the position of the maximum on the temperature dependence of tan δ increased by 14 °C compared to the neat PVAc (39 °C) by adding 5 vol.% of HAP. At −40 °C, the observed small increase of E′ with vf was in agreement with the prediction based on the simple Kerner equation. At +50 °C, the increase of E′ with vf observed was an order of magnitude greater than that predicted using the simple continuum mechanics model. An attempt was made to explain the observed deviation employing the hypothesis of immobilized entanglements.  相似文献   

7.
In this study, the effect of hydrogen on methane combustion characteristic was tested. The ignition temperature (T10) and burn off temperature (T90) was carried out in a quartz reactor at atmospheric pressure with the mixture flow rate of 800 mL/min. The compositions of outlet gas were measured online by Gasmet DX4000 FTIR gas analyzer. The results showed that hydrogen enhanced the activity of methane. For all methane concentration range, the T10 of methane could decrease 50 °C–70 °C with the H2/CH4 mole ratio at 0.1. For 1 vol.% methane combustion, when the H2/CH4 was equal to 0.05, the T10 and T90 could decrease 45 °C and 42 °C, respectively. When the H2/CH4 was 2.5, the T10 and T90 could decrease about 170 °C and 180 °C, respectively. Further more, CO generated in a wider temperature range when the hydrogen was added.  相似文献   

8.
Crystallization and melting behavior of short ethylene sequence of metallocene ethylene/α-olefin copolymer with high comonomer content have been studied by standard DSC and modulated-temperature differential scanning calorimetry (M-TDSC) technique. In addition to high temperature endotherm around 120°C, a low temperature endotherm is observed at lower temperatures (40-80°C), depending on time and temperature of isothermal crystallization. The peak position of the low temperature endotherm Tmlow varies linearly with the logarithm of crystallization time and the slope, D, decreases with increasing crystallization temperature Tc. The Tmlow also depends on the thermal history before the crystallization at Tc, and an extrapolation of Tmlow (30.6°C) to a few seconds has been obtained after two step isothermal crystallization before the crystallization at 30°C. The Tmlow is nearly equal to Tc, and it indicates that the initial crystallization at low temperature is nearly reversible. Direct evidence of conformational entropy change of secondary crystallization has been obtained by using M-TDSC technique. Both the M-TDSC result and the activation energy analysis of temperature dependence suggest that crystal perfection process and conformational entropy decreasing in residual amorphous co-exist during secondary crystallization.  相似文献   

9.
A low molecular weight (MW) poly(ethylene oxide) (PEO) crystallized in ultrathin films displays various crystal growth patterns in a crystallization temperature (Tx) range from 20.0 °C to 50.0 °C. In succession, the following patterns are found: nearly one-dimensional (1D) dendrite-like crystal patterns at Tx ≤ 38.0 °C, two-dimensional (2D) seaweed-like patterns between 39.0 °C ≤ Tx ≤ 42.0 °C and again, nearly 1D dendrite-like patterns at Tx ≥ 43.0 °C. These transitions result from a complex interplay of varying growth rates along different growth directions and preservation of growth planes. Structural analysis carried out via electron diffraction indicates that the dendrite-like crystals formed at the low and high Tx values differ by their fast growth directions: along the {120} normal at the low Tx values and along the (100) and (010) normal at the high Tx values. In the later case however, the major growth faces are still the {120}, this time tilted at 45° and indicating the a∗ and b axes growth tips. In the intermediate Tx range (39.0 °C-42.0 °C), three growth directions coexist giving rise to the seaweed morphology. The crystal growth rates at the low and high Tx values are constant versus time. For the seaweed, a square-root dependence is obtained. These differences are probably due to 1D and 2D growth in the ultrathin films and are associated with different growth patterns of the dendrites and the seaweed, respectively.  相似文献   

10.
The preparation of polyimides containing side-chain chromophores and the long-term aging performance of poled films are described. These materials were compared to guest-host polycarbonate films. Mach-Zehnder optical interferometers were fabricated from these polymers that contained CLD- and FTC-type chromophores. Changes in optical properties were monitored for months at four temperatures ranging from ambient to 110 °C. The isothermal relaxation data were modeled using both a stretched exponential equation and a power law in time equation. The temperature dependency of the time constants of these equations was modeled using a new activation-energy equation: ln(τ/τp) = ER(1 + tanh[(Tc − T)/D])/2RT + Ep/RT where Tc is the central temperature of the transition zone, D is the breadth of the zone, and Es are the activation energies of rigid and pliable materials. Multi-year high-temperature stability of the poled guest-host and side-chain materials was predicted.  相似文献   

11.
Dong Ruan 《Polymer》2008,49(4):1027-1036
Cellulose was dissolved rapidly in 9.5 wt% NaOH/4.5 wt% thiourea aqueous solution pre-cooled to −5 °C, as a result of the formation of an inclusion complex (IC) associated with cellulose, NaOH and thiourea, which could bring cellulose to the aqueous system. To clarify the rheological behaviors of the system dissolved at low temperature, this cellulose solution was investigated by dynamic viscoelastic measurement. The shear storage modulus (G′) and loss modulus (G″) as a function of the angular frequency (ω), concentration (c), temperature (T) and weight-average molecular weight (Mw) were analyzed and discussed. The results revealed that gels could form in the cellulose solution at either high temperature or low temperature, or for longer time. Interestingly, 4 wt% cellulose solution having cellulose Mw of 12.0 × 104 remained at liquid state for longer time (12 days) at the temperature ranging from 0 to 5 °C. The gels already formed at elevated temperature were irreversible, i.e., after cooling to lower temperature including the temperature of cellulose dissolution (−5 °C), they could not be dissolved to become liquid. The Arrhenius analysis of the temperature dependence of viscosity in the cellulose solution indicated that a high apparent activation energy (Ea) occurred at 0 to −5 °C, suggesting the relatively stable IC structure. However, the viscosity of the cellulose solution increased slowly with an increase in the temperature at 0-40 °C, leading to the negative Ea values. The results suggested that the cellulose solution in NaOH/thiourea system is complex to differ from normal polymer systems.  相似文献   

12.
Kai C. Yen 《Polymer》2009,50(2):662-98
Polymorphism and its influential factors in poly(heptamethylene terephthalate) (PHepT) were probed using differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and wide angle X-ray diffraction (WAXD). PHepT exhibits two crystal types (α and β) upon crystallization at various isothermal melt-crystallization temperatures (Tcs) by quenching from different Tmaxs (maximum temperature above Tm for melting the original crystals). Melt-crystallized PHepT with either initial α- or β-crystal by quenching from Tmax lower than 110 °C leads to higher fractions of α-crystal, but crystallization from Tmax higher than 140 °C leads to higher fractions of β-crystal. In addition to Tmax, polymorphism in PHepT is also influenced by crystallization temperature (Tc = 25-75 °C). When PHepT is melt-crystallized from a high Tmax = 150 °C (completely isotropic melt), it shows solely β crystal for higher Tc, and solely the α-crystal for Tc < 25 °C; in-between Tc = 25 and 35 °C, mixed fractions of both α- and β-crystals. However, by contrast, when PHepT is melt-crystallized from a lower Tmax = 110 °C, it shows α-crystal only at all Tcs, high or low.  相似文献   

13.
A. Flores  N. Stribeck  E. Bosch 《Polymer》2005,46(22):9404-9410
The micromechanical properties (microindentation hardness, H, elastic modulus, E) of poly(ethylene terephthalate) (PET), isothermally crystallized at various temperatures (Ta) from the glassy state are determined to establish correlations with thermal properties and nanostructure. Analysis of melting temperature and crystal thickness derived from the interface distribution function analysis of SAXS data reveals that for Ta<190 °C the occurrence of two lamellar stack populations prevails whereas for samples annealed at Ta>190 °C a population of lamellar stacks with a unimodal thickness distribution emerges. The H and E-values exhibit a tendency to increase with the degree of crystallinity. The results support a correlation E/H∼20 in accordance with other previously reported data. The changes of microhardness with annealing temperature are discussed in terms of the crystallinity and crystalline lamellar thickness variation. Unusually high hardness values obtained for PET samples crystallized at Ta=190 °C are discussed in terms of the role of the rigid amorphous phase which offers for the hardness of amorphous layers constrained between lamellar stacks a value of Ha∼150 MPa. On the other hand, for Ta=240 °C the decreasing H-tendency could be connected with the chemical degradation of the material at high temperature.  相似文献   

14.
The thermo-responsive behavior of a unique biocompatible polymer, poly(N-substituted α/β-asparagine) derivative (PAD), has been studied with several NMR methods. The 1H and 13C solution NMR measurements of the PAD in DMSO-d6 were used to investigate the isolated polymer and perform spectral assignments. By systematic addition of D2O we have tracked structural changes due to aggregation and observed contraction of hydrophilic side chains. Solution and cross polarization/magic angle spinning (CP/MAS) 13C NMR approaches were implemented to investigate the aggregates of the PAD aqueous solution during the liquid to gel transition as the temperature was increased. At temperatures near 20 °C, all of the peaks from the PAD were observed in the 13C CP/MAS and 13C solution NMR spectra, indicating the presence of polymer chain nodes. Increasing the temperature to 40 °C resulted in a partial disentanglement of the nodes due to thermal agitation and further heating resulted in little to no additional structural changes. Deuterium T1T2 and T2T2 two-dimensional relaxation spectroscopies using an inverse Laplace transform, were also implemented to monitor the water–PAD interaction during the phase transition. At temperatures near 20 °C the dynamical characteristics of water were manifested into one peak in the deuterium T1T2 map. Increasing the temperature to 40 °C resulted in several distinguishable reservoirs of water with different dynamical characteristics. The observation of several reservoirs of water at the temperature of gel formation at 40 °C is consistent with a physical picture of a gel involving a network of interconnected polymer chains trapping a fluid. Further increase in temperature to 70 °C resulted in two non-exchanging water reservoirs probed by deuterium T2T2 measurements.  相似文献   

15.
H.Y WangE Ruckenstein 《Carbon》2002,40(11):1911-1917
The carbon formation during methane decomposition was investigated at 900 °C over the 48 wt% Co-MgO catalysts as a function of the calcination temperature Tc used in their preparation. Examination of the carbonaceous deposits by transmission electron microscopy revealed three kinds of structures: shapeless tangles, shell-like materials, and carbon filaments. In another set of experiments, the structural characteristics of the calcined catalysts were investigated using temperature-programmed reduction (TPR) and X-ray diffraction (XRD). Co3O4, Co2MgO4, and (Co, Mg)O (solid solution of CoO and MgO) were identified for Tc≤700 °C, Co3O4 and (Co, Mg)O for Tc=800 °C and only (Co, Mg)O for Tc=900 °C. It was found that the metal particles originated from the reduction of the solid solution favored the formation of filamentous carbon. A possible explanation is proposed.  相似文献   

16.
The nanostructural changes associated to the multiple melting behaviour of isotropic cold-crystallized poly(ethylene terephthalate) (PET) have been investigated by means of simultaneous wide- and small-angle X-ray scattering, using a synchrotron radiation source. Variations in the degree of crystallinity, coherent lateral crystal size and long period values, as a function of temperature, for two different heating rates are reported for cold-crystallized samples in the 100-190 °C range. The Interface Distribution Function analysis is also employed to provide the crystalline and amorphous layer thickness values at various temperatures of interest. Results suggest that samples crystallized at both low (Ta = 100-120 °C) and high (Ta = 160-190 °C) temperatures are subjected to a nearly continuous nanostructural reorganization process upon heating, starting immediately above Tg (≈80 °C) and giving rise to complete melting at ≈260 °C. For all the Ta investigated, a melting-recrystallization mechanism seems to take place once Ta is exceeded, concurrently to the low-temperature endotherm observed in the DSC scans. For low-Ta and slow heating rates (2 °C/min), a conspicuous recrystallization process is predominant within Ta + 30 °C ≤ T ≤ 200 °C. In contrast, for high-Ta, an increasingly strong melting process is observed. For both, high- and low-Ta, an extensive structural reorganization takes place above 200 °C, involving the appearance of new lamellar stacks simultaneously to the final melting process. The two mechanisms should contribute to the high-temperature endotherm in the DSC scan. Finally, the use of a high heating rate is found to hinder the material's overall recrystallization process during the heating run and suggests that the high-temperature endotherm is ascribed to the melting of lamellae generated or thickened during the heating run.  相似文献   

17.
Cubic specimens of a semicrystalline poly(butylene terephthalate) (PBT) have been compressed up to post-yield deformation levels with a fast (3.0 × 10−2 s−1) and a slow (1.5 × 10−4 s−1) strain rate at three different temperatures (25 °C, 45 °C, and 100 °C, i.e. below, close and above the glass transition temperature of the material, Tg, respectively). Differently from literature results reported for amorphous polymers, semicrystalline PBT shows that, after a post-yield deformation, recovery occurs also at temperatures higher than Tg, and that an irreversible deformation, ?irr, is set in the material. The irreversible strain component has been evaluated as the residual deformation after a thermal treatment of 1 h at 180 °C.After unloading, isothermal strain recovery has been monitored for time periods of 1 h at various temperatures. From the obtained data, strain recovery master curves have been constructed by a time-temperature superposition scheme. The features of the recovery process for the various deformation conditions have been analysed. In particular, it appears that specimens deformed below Tg show a lower irreversible component, whereas, when deformed above Tg, they display a higher irreversible deformation and a slower recovery process. Moreover, the effect of deformation rate appears particularly marked for samples deformed above Tg.  相似文献   

18.
Cross-linkable poly(phthalazinone ether ketone sulfone) bearing tetrafluorostyrene groups (PPEKS-FSt) has been prepared by copolycondensation reaction for optical waveguide applications. The resulting amorphous polymer exhibits good solubility in some common polar organic solvents (e.g., N,N′-dimethylacetamide, N-methyl-2-pyrrolidinone, chloroform) at room temperature, and can be easily spin-coated into thin films with good optical quality. The glass transition temperature (Tg) and the temperature of 1% weight loss (1% Td) are 261 °C and 494 °C, respectively, which could be further increased by 31 °C and 14 °C upon thermal cross-linking. The cross-linked polymer thin films exhibit high refractive index (∼1.65, TE mode), high thermo-optic coefficient value (dn/dT) (−1.455 × 10−4/°C, TE mode), low optical loss (less than 0.24 dB/cm at 1310 nm) and relatively low birefringence (∼0.007).  相似文献   

19.
Zengshe Liu  Sevim Z. Erhan 《Polymer》2005,46(23):10119-10127
New epoxidized soybean oil (ESO)/clay nanocomposites have been prepared with triethylenetetramine (TETA) as a curing agent. The dispersion of the clay layers is investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD and TEM data reveal the intercalated structure of ESO/clay nanocomposites has been developed. The thermogravimetric analysis exhibits that the ESO/clay nanocomposites are thermally stable at temperatures lower than 180 °C, with the maximum weight loss rate after 325 °C. The glass transition temperature, Tg, about 7.5 °C measured by differential scanning calorimetry (DSC) and Tg about 20 °C measured by dynamic mechanical study have been obtained. The difference in the Tg between DSC and dynamic measurements may be caused by different heating rate. The nanocomposites with 5-10 wt% clay content possess storage modulus ranging from 2.0×106 to 2.70×106 Pa at 30 °C. The Young's modulus (E) of these materials varies from 1.20 to 3.64 MPa with clay content ranging from 0 to 10 wt%. The ratio of epoxy (ESO) to hydrogen (amino group of TETA) greatly affects dynamic and tensile mechanical properties. At higher amount of TETA, the nanocomposites exhibit stronger tensile and dynamic properties.  相似文献   

20.
Kiyotaka Arai  Kohji Tashiro 《Polymer》2010,51(21):4831-4835
The melting (Tm) and glass transition (Tg) temperatures of a series of ethylene (E)-tetrafluoroethylene (TFE) copolymer (ETFE) have been found to show unique dependence on the TFE content with the minimal and maximal points. These behaviors have been interpreted successfully on the basis of the degree of alternation of E and TFE monomeric units along the skeletal chain. The melting point of a perfectly alternating copolymer is estimated to be 295 °C on the basis of the dependence of Tm using a modified Flory’s equation. The corresponding Tg was estimated as 145 °C by applying a modified Gibbs-Damnation’s equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号