首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SBS/蒙脱土复合材料的制备及其性能Ⅱ.复合材料的性能   总被引:3,自引:0,他引:3  
分别采用大分子溶液插层法和大分子熔融插层法制备了苯乙烯-丁二烯-苯乙烯共聚物(SBS)/蒙脱土纳米复合材料.研究了材料的力学性能。纳米结构的形成对复合材料的性能产生显著影响,少量蒙脱士的引入可以明显改善SBS/蒙脱土复合材料的力学性能。无论溶液插层法制备的星型SBS/蒙脱土纳米复合材料,还是熔融插层法制备的线型SBS/蒙脱土纳米复合材料,其拉伸强度和断裂伸长率都同时增加。其中,溶液插层法制备的纳米复合材料的拉伸强度和断裂伸长率分别较纯SBS增加了75%和55%;熔融法制备的纳米复合材料的托伸强度和断裂伸长率分别较纯SBS增加了70%和18%。  相似文献   

2.
分别采用大分子溶液插层法和大分子熔融插层法制备了苯乙烯-丁二烯-苯乙烯共聚物(SBS),蒙脱土纳米复合材料,采用X射线衍射和透射电子显微镜对材料的结构进行了表征。结果表明,无论是采用大分子溶液插层法还是大分子熔融插层法,都能得到SBS/蒙脱土纳米复合材料。对于溶液插层法,蒙脱土插层剂的种类、SBS牌号对插层效果都有影响:对于熔融插层法,SBS牌号对是否形成插层型纳米复合材料影响最大,淬火对熔融挤出后得到的纳米复合材料无益。星形结构的SBS适宜于采用溶液插层法、线形结构的SBS适宜于采用熔融插层法制备纳米复合材料。  相似文献   

3.
研究了制备剥离型(苯乙烯/马来酸酐)共聚物(SMAH)蒙/脱土(MMT)纳米复合材料的方法。研究表明,通过原位插层及熔融插层只能制备出插层型的SMAH/MMT纳米复合材料。为了制备剥离型的SMAH/MMT纳米复合材料,先将尼龙6(PA6)与MMT熔融插层制备出PA6/MMT纳米复合材料,再用抽提的方法将PA6/MMT复合材料中的部分PA6除去,得到含有少量PA6的剥离型MMT,然后将剥离型MMT与SMAH共混,从而制备出剥离型的SMAH/MMT纳米复合材料。该复合材料的粘度低于SMAH,且具有较好的加工性能。  相似文献   

4.
The nanocomposite films comprising polymer blends of poly(vinyl alcohol) (PVA), poly(vinyl pyrrolidone) (PVP), poly(ethylene oxide) (PEO), and poly(ethylene glycol) (PEG) with montmorillonite (MMT) clay as nanofiller were prepared by aqueous solution casting method. The X‐ray diffraction studies of the PVA–x wt % MMT, (PVA–PVP)–x wt % MMT, (PVA–PEO)–x wt % MMT and (PVA–PEG)–x wt % MMT nanocomposites containing MMT concentrations x = 1, 2, 3, 5 and 10 wt % of the polymer weight were carried out in the angular range (2θ) of 3.8–30°. The values of MMT basal spacing d001, expansion of clay gallery width Wcg, d‐spacing of polymer spherulite, crystallite size L and diffraction peak intensity I were determined for these nanocomposites. The values of structural parameters reveal that the linear chain PEO and PEG in the PVA blend based nanocomposites promote the amount of MMT intercalated structures, and these structures are found relatively higher for the (PVA–PEO)–x wt % MMT nanocomposites. It is observed that the presence of bulky ester‐side group in PVP backbone restricts its intercalation, whereas the adsorption behavior of PVP on the MMT nanosheets mainly results the MMT exfoliated structures in the (PVA–PVP)–x wt % MMT nanocomposites. The crystallinities of the PEO and PEG were found low due to their blending with PVA, which further decreased anomalously with the increase of MMT concentration in the nanocomposites. The decrease of polymer crystalline phase of these materials confirmed their suitability in preparation of novel solid polymer nanocomposite electrolytes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40617.  相似文献   

5.
Zhiqi Shen  Yi-Bing Cheng 《Polymer》2002,43(15):4251-4260
Polymer-clay nanocomposites of poly(ethylene oxide)/Na-montmorillonite (PEO/MMT) and PEO/organo-modified bentonite (B34) systems prepared via solution intercalation and melt intercalation have been compared by X-ray diffraction and Fourier transform infrared (FTIR) analysis. The gallery size of solution-intercalated hybrids in both PEO/MMT and PEO/B34 systems increases with PEO content up to a plateau level at 15%. However, the gallery size of melt-intercalated PEO/MMT and PEO/B34 hybrid remains the same regardless of the PEO concentration. FTIR analysis shows no difference in spectrum of samples prepared by solution intercalation compared to melt intercalation. The PEO conformation in the PEO/clay intercalated hybrids is concluded to be a distorted helical structure.  相似文献   

6.
Nanocomposites of recycled poly(methyl methacrylate) (PMMA) and both natural (Nanomer PGV MMT), and organically modified Nanomer I44P, Nanomer I30P and Cloisite 30B montmorillonites (O‐MMT) were prepared by solution dispersion method with the use of two miscible solvents, followed by melt intercalation process in a twin‐screw miniextruder. The final product has been found to show a homogeneous structure with a uniform dispersion/intercalation of the silicate layers. The effect of MMT and O‐MMT layers on the properties of the nanocomposites was investigated and characterized by UV–vis spectroscopy, differential scanning calorimetry, atomic force microscopy, and mechanical testing. Higher contents of nanoclay in nanocomposites exhibited worse light transmittance capacity but higher tensile modulus. Properties of the samples depended not only on the clay contents (up to 10 wt%) but also on the clay type employed. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

7.
The polymer nanocomposite (PNC) films consisted of poly(ethylene oxide) (PEO) and sodium cations montmorillonite (MMT) clay were prepared by aqueous solution casting and direct melt press compounding techniques, whereas the films of PEO with trimethyl octadecyl ammonium cations organo‐modified montmorillonite (OMMT) clay were formed by melt pressed technique. The clay concentrations in the nanocomposites used are 1, 2, 3, 5, 10, and 20 wt % of the PEO weight. The X‐ray diffraction patterns of these nanocomposites were measured in the angular range (2θ) of 3.8–30°. The values of basal spacing d001 of MMT/OMMT, clay gallery width Wcg, d‐spacings of PEO crystal reflections d120 and d112, and their corresponding crystallite size L, and the peaks intensity I (counts) were determined for these nanocomposites. Results reveal that the nanocomposites have intercalated clay structures and the amount of intercalation increases with the increase of clay concentration. As compared to melt pressed PEO–MMT nanocomposites, the amount of clay intercalation is higher in aqueous solution cast nanocomposites. At 20 wt % MMT dispersion in PEO matrix, the solution cast PEO–MMT nanocomposite almost changes into amorphous phase. The melt press compounded PEO–OMMT films show more intercalation as compared to the PEO–MMT nanocomposites prepared by same technique. In melt pressed nanocomposites, the PEO crystalline phase significantly reduces when clay concentration exceeds 3 wt %, which is evidenced by the decrease in relative intensity of PEO principal crystalline peaks. The effect of interactions between the functional group (ethylene oxide) of PEO and layered sheets of clay on both the main crystalline peaks of PEO was separately analyzed using their XRD parameters in relation to structural conformations of these nanocomposites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39898.  相似文献   

8.
Longzhen Qiu 《Polymer》2006,47(3):922-930
The morphology and thermal stabilization mechanism of polymeric nanocomposites prepared by solution intercalation of linear low density polyethylene (LLDPE) with montmorillonite (MMT), MgAl layered double hydroxide (LDH), and ZnAl LDH have been studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). Both LLDPE/MMT and LLDPE/MgAl LDH nanocomposites exhibit mixed intercalated-exfoliated structures, whereas the LLDPE/ZnAl LDH nanocomposites exhibit completely exfoliated structures because the ZnAl LDH layers can be easily broken during the refluxing process. All nanocomposites show significantly enhanced thermal stability compared with virgin LLDPE due to the increases of the effective activation energy (Eα) during degradation process. However, LDHs nanocomposites show much higher thermal degradation temperatures than MMT nanocomposites with the same filler content because they have much higher Eα than MMT nanocomposites at the early degradation stage. The data of real time FTIR spectroscopy and morphological evolution reveal a catalytic dehydrogenation effect presents in MMT nanocomposites, which may decrease the Eα of degradation and thermal stability of MMT nanocomposites.  相似文献   

9.
利用十八烷基三甲基溴化铵(OTAB)对蒙脱土(MMT)进行有机改性,并通过溶液插层法制备尼龙12/有机蒙脱土(PA12/OMMT)纳米复合粉末。利用X射线衍射、傅立叶变换红外光谱、扫描电子显微镜等手段对改性后的MMT及PA12/OMMT纳米复合粉末的结构和微观形貌进行表征,并将复合粉末热压成型制成标准件,测试其力学性能和热性能。结果表明,经过有机改性,MMT的层间距由1.24 nm增加到了2.13 nm,且改性后的MMT能均匀地分散在PA12基体中,PA12/OMMT纳米复合粉末的成型件在拉伸强度、弯曲强度、冲击强度和热性能方面都优于纯PA12粉末。PA12/OMMT纳米复合粉末为选择性激光烧结技术(SLS)提供了一种性能良好的粉末材料。  相似文献   

10.
This article presented a novel modification on the melt intercalation. Montmorillonite (MMT) with exothermal enthalpy effect was prepared by the compounding of MMT with AIBN in solution. An exfoliated polystyrene (PS)/MMT nanocomposites could be obtained by the introduction of exothermal MMT via melt mixing, and the comparison with the counterpart indicated the exfoliation of MMT was accelerated by the in situ exothermal enthalpy and nitrogen released during melt intercalation. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2230–2236, 2004  相似文献   

11.
采用复配阳离子交换剂对蒙脱土(MMT)进行有机化处理,通过固相接枝技术对超高分子量聚乙烯(UHMWPE)进行表面改性,然后采用熔融插层法制备UHMWPE/MMT纳米复合材料。XRD和SEM分析表明,MMT在UHMWPE基体中达到了纳米级分散,同时,有机MMT能较大幅度改善UHMWPE的流动性能,少量有机MMT的加入就可使UHMWPE的力学性能有所提高,  相似文献   

12.
聚丙烯/蒙脱土纳米复合材料的制备与性能   总被引:67,自引:5,他引:62  
用烷基季铵盐对钠基蒙脱土进行有机化处理,使其成为有机蒙脱土。X射线衍射(XRD)表明有机阳离子已同钠离子发生离子交换作用,导致层间距扩大。用熔融插层法制备聚丙烯/蒙脱土纳米复合材料,测试了力学性能。通过XRD、DSC等手段研究了其结构与结晶行为,并与聚丙烯进行了对比。实验表明,通过熔融插层可使聚丙烯插层于蒙脱土片层之中,且所得聚合物的冲击强度有所提高。  相似文献   

13.
Poly(ethylene terephthalate) (PET)/montmorillonite (MMT) nanocomposites were prepared by solution intercalation method. The clay was organo‐modified with the intercalation agent cetylpyridinium chloride (CPC). Wide‐angle X‐ray diffraction (XRD) showed that the layers of MMT were intercalated by CPC. Four nanocomposites with organoclay contents of 1, 5, 10, and 15 wt % were prepared by solution blending. XRD showed that the interlayer spacing of organoclay in the nanocomposites depends on the amount of organoclay present. According to the results of differential scanning calorimetry (DSC) analysis, clay behaves as a nucleating agent and enhances the crystallization rate of PET. The maximum enhancement of crystallization rate for the nanocomposites was observed in those containing about 10 wt % organoclay within the studied range of 1–15 wt %. From thermogravimetric analysis (TGA), we found that the thermal stability of the nanocomposites was enhanced by the addition of 1–15 wt % organoclay. These nanocomposites showed high levels of dispersion without agglomeration of particles at low organoclay content (5 wt %). An agglomerated structure did form in the PET matrix at 15 wt % organoclay. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 140–145, 2004  相似文献   

14.
The problems with non-degradable materials in different applications have led to an interest in materials based on bionanocomposites. In this study, polymer–montmorillonite nanocomposites based on natural polymers (chitosan, alginate, gelatin and starch) and montmorillonite (MMT) were prepared using solution intercalation method. Then hybrid nanocomposites were synthesized by chemical oxidative polymerization of aniline in the presence of polymer–MMT nanocomposites. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) were employed to characterize the nanocomposites. FT-IR confirmed the successful preparation of hybrid nanocomposites. From the XRD results, intercalation of the MMT platelets in the matrix of polymers was examined. Further investigation by TEM images showed a mixed intercalated and flocculated structure for nanocomposites. Moreover, the TGA results showed improved thermal stability for the nanocomposites. The results presented in this study showed the feasibility of using these hybrid nanocomposites with improved properties in wide range of applications.  相似文献   

15.
Poly(vinyl alcohol) (PVA)/montmorillonite clay (MMT) nanocomposites in the form of films were prepared under the effect of electron beam irradiation. The PVA/MMT nanocomposites gels were characterized by X‐ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and mechanical measurements. The study showed that the appropriate dose of electron beam irradiation to achieve homogeneous nanocomposites films and highest gel formation was 20 kGy. The introduction of MMT (up to 4 wt %) results in improvement in tensile strength, elongation at break, and thermal stability of the PVA matrix. In addition, the intercalation of PVA with the MMT clay leads to an impressive improved water resistance, indicating that the clay is well dispersed within the polymer matrix. Meanwhile, it was proved that the intercalation has no effect on the metal uptake capability of PVA as determined by a method based on the color measurements. XRD patterns and SEM micrographs suggest the coexistence of exfoliated intercalated MMT layers over the studied MMT contents. The DSC thermograms showed clearly that the intercalation of PVA polymer with these levels of MMT has no influence on the melting transitions; however, the glass transition temperature (Tg) for PVA was completely disappeared, even at low levels of MMT clay. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1129–1138, 2006  相似文献   

16.
Summary Poly(butylene terephthalate) (PBT)/clay nanocomposites have been prepared by melt intercalation method directly from pristine montmorillonite (MMT), using cetyl pyridinium chloride (CPC) as the polymer/clay reactive compatibilizer. The effect of the reactive compatibilizer (CPC) proportion relative to the clay on the structure and properties of the PBT/clay nanocomposites was studied by XRD, TEM, TGA and cone calorimeter. The results show that such appropriate proportion as 1 wt % CPC to 3 wt % MMT induces well-dispersed intercalated morphology and better thermal and flame retarded properties. At last the intercalation mechanism of the technology was discussed.  相似文献   

17.
Poly(ethylene terephthalate) (PET)/montmorillonite (MMT) nanocomposites were prepared by solution intercalation method. The clay was organo-modified with intercalation agent of cetyltrimetylammonium chloride (CMC). XRD showed that the layers of MMT were intercalated by CMC. Four nanocomposites with organoclay contents of 1, 5, 10, and 15 wt% were prepared by solution blending. XRD showed that the interlayer spacing of organoclay in the nanocomposites depends on the amount of organoclay. The nucleating effect of organoclay is investigated using differential scanning calorimetry (DSC) analysis. Clay behaves as a nucleating agent and enhances the crystallization rate of PET. Maximum enhancement in crystallization rate for the nanocomposites was observed in blends containing ca. 10 wt% of clay in the range of 1–15 wt%. According to transmission electron microscopy (TEM), the organoclay particle was highly dispersed in the PET matrix without a large agglomeration of particles for low organoclay content (5 wt%). Agglomerated structure did form in the PET matrix at 15 wt% organoclay content.  相似文献   

18.
Double‐modified montmorillonite (MMT) was first prepared by covalent modification of MMT with 3‐aminopropyltriethoxysilane and then intercalation modification by tributyl tetradecyl phosphonium ions. The obtained double‐modified MMT was melt compounded with polypropylene (PP) to obtain nanocomposites. The dispersion of the double‐modified MMT in PP was found to be greatly improved by the addition of PP‐graft‐maleic anhydride (PP‐g‐MA) as a “compatibilizer,” whose anhydride groups can react with the amino groups on the surface of the double‐modified MMT platelets and thus improve the dispersion of MMT in PP. Fourier transform infrared, X‐ray diffraction, transmission electron microscopy, thermogravimetric analysis, scanning electron microscopy, and tensile test were used to characterize the structure of the double‐modified MMT, morphology, and the thermal and mechanical properties of the nanocomposites. The results show that PP‐g‐MA promotes the formation of exfoliated/intercalated morphology and obviously increases the thermal properties, tensile strength, and Young's modulus of the PP/double‐modified MMT nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
采用乳液插层法制备了天然橡胶/蒙脱土(NR/MMT)纳米复合材料,采用透射电子显微镜(TEM)研究了复合材料的亚微观形态,并对复合材料的力学性能和耐磨耗性能进行了研究。TEM结果显示,MMT片层以纳米尺寸均匀分散在NR基体中;力学性能测试结果表明,当MMT用量小于12份时,纳米复合材料的力学性能随MMT用量的增加而逐渐增大,NR/MMT纳米复合材料具有优良的力学性能;蒙脱土的加入稍微降低纳米复合材料的耐磨性。  相似文献   

20.
The thermoplastic polyurethane/montmorillonite (TPU/MMT) nanocomposites were prepared by melt intercalation. The structure and property of the TPU/MMT nanocomposites were studied by XRD, TEM, TG, Molau test, and mechanical property measurement. The interlayer spacing between the MMT platelets in TPU/MMT nanocomposites blended for 10 and 15 min was the same. The silicate platelets were dispersed in TPU matrix on 5–15 nm scale for TPU/MMT nanocomposites. The interface interaction between the silicate layers and TPU matrix for TPU/MMT nanocomposites was strong. Compared to those of pure TPU, the tensile strength and tear strength of the TPU/MMT nanocomposites increased. The tensile strength and tear strength of the TPU/MMT nanocomposites decreased with increasing blending time because of the degradation of the TPU matrix. The thermal stability of the TPU/MMT nanocomposites was lower than that of the pure TPU in the first step, whereas in the second step, the TPU/MMT nanocomposites showed higher thermal stability. POLYM. COMPOS., 2008. © 2007 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号