首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of non-isothermal crystallization of uniaxially oriented poly(ethylene terephthalate) fibers modified by poly(ethylene glycol)(PET-co-PEG) was investigated by using a DSC heating scanning method and analyzed by using a new non-isothermal equation. Two crystallization peaks appeared for PET and PET-co-PEG fibers. The kinetics parameters, such as the Avrami exponent, the activation energies of diffusion, and the weight fractions per sub-process, were obtained. Based on the Avrami exponent, peak position, and crystallization rate, the crystallization mechanism was proposed.  相似文献   

2.
The differential scanning calorimeter heating curves of uniaxially oriented poly(ethylene terephthalate) (PET) fibers with three peaks were analyzed by using a newly proposed equation. The diffusion-controlled crystallization theory is suitable for describing cold crystallization of uniaxially oriented PET fibers. A crystallization model was proposed based on the kinetic parameters obtained. The model embraces the three sub-processes of crystallization corresponding to different growth geometries. The first sub-process corresponds to the nucleation of ordered molecular segments or the radial growth of preformed nucleus, resulting in the shorter bundle-like entities. The second sub-process corresponds to further growth of the bundle-like crystallites along chain direction, resulting in the longer bundle-like entities. The third sub-process corresponds to the three-dimensional growth of crystallites relating to the random segments, resulting in the spherical entities.  相似文献   

3.
Uniaxial and plane strain compression experiments are conducted on amorphous poly(ethylene terephthalate) (PET) and poly(ethylene terephthalate)-glycol (PETG) over a wide range of temperatures (25-110 °C) and strain rates (.005-1.0 s−1). The stress-strain behavior of each material is presented and the results for the two materials are found to be remarkably similar over the investigated range of rates, temperatures, and strain levels. Below the glass transition temperature (θg=80 °C), the materials exhibit a distinct yield stress, followed by strain softening then moderate strain hardening at moderate strain levels and dramatic strain hardening at large strains. Above the glass transition temperature, the stress-strain curves exhibit the classic trends of a rubbery material during loading, albeit with a strong temperature and time dependence. Instead of a distinct yield stress, the curve transitions gradually, or rolls over, to flow. As in the sub-θg range, this is followed by moderate strain hardening and stiffening, and subsequent dramatic hardening. The exhibition of dramatic hardening in PETG, a copolymer of PET which does not undergo strain-induced crystallization, indicates that crystallization may not be the source of the dramatic hardening and stiffening in PET and, instead molecular orientation is the primary hardening and stiffening mechanism in both PET and PETG. Indeed, it is only in cases of deformation which result in highly uniaxial network orientation that the stress-strain behavior of PET differs significantly from that of PETG, suggesting the influence of a meso-ordered structure or crystallization in these instances. During unloading, PETG exhibits extensive elastic recovery, whereas PET exhibits relatively little recovery, suggesting that crystallization occurs (or continues to develop) after active loading ceases and unloading has commenced, locking in much of the deformation in PET.  相似文献   

4.
Studies of the crystallization of poly(ethylene terephthalate) (PET) by d.s.c., both isothermally and non-isothermally, show that the addition of silica causes marked increases in rate at loadings < 1 part filler in 100 parts polymer. At higher loadings the overall rate of crystallization decreases until it becomes less than that of un-nucleated PET. Modified silica, with an alkoxy-coated surface, causes similar but less pronounced changes in rate. The retardation in rate inspite of an increase in the number of spherulites is attributed to an increase in the viscosity of the polymer melt due to strong adsorption onto the silica particles.  相似文献   

5.
B.D. Beake  G.J. Leggett 《Polymer》2002,43(2):319-327
Nanoindentation and nanoscratch testing have revealed large differences in nanomechanical behaviour on uniaxially and biaxially drawn poly(ethylene terephthalate) films. Differences can be ascribed to the processing history of the film. The biaxial material exhibited significantly higher hardness and elastic modulus than the uniaxial film, presumably due to increased crystallinity from the second draw. The biaxially drawn material was also less susceptible to creep deformation. The plasticity index, the ratio of the dissipated energy to the total indentation energy, was greater on the uniaxial film, indicating that it exhibits less plastic deformation than the biaxially stretched film. The differences in processing also affected the resistance of the films to nanoscratching wear. The wear resistance of the films correlated with the ratio of the hardness to the modulus.  相似文献   

6.
A series of branched poly(ethylene terephthalate) (BPET) samples were prepared from melt polycondensation by incorporation of various amount (0.4-1.2 mol%) of glycerol as a branching agent. These polymers were characterized by means of H1 NMR, intrinsic viscosity. The general crystalline and melting behavior was investigated via DSC. It was found that the crystalline temperature Tcc from the melt shifted to high temperature and the Thc from the glass got low for BPETs while the melting temperatures of BPETs kept almost unchanged. The kinetics of isothermal crystallization was studied by means of DSC and POM. It was found that the present branching accelerated the entire process of crystallization of BPETs, although prolonged the induced time. In addition, branching reduced nucleation sites; hence the number of nucleates for BPET got smaller. Therefore, more perfect geometric growth of crystallization and greater radius of spherulites could develop in BPET due to less truncation of spherulites.  相似文献   

7.
Carbon nanotubes induced crystallization of poly(ethylene terephthalate)   总被引:2,自引:0,他引:2  
K. Anoop Anand  Rani Joseph 《Polymer》2006,47(11):3976-3980
We have investigated the crystallization characteristics of melt compounded nanocomposites of poly(ethylene terephthalate) (PET) and single walled carbon nanotubes (SWNTs). Differential scanning calorimetry studies showed that SWNTs at weight fractions as low as 0.03 wt% enhance the rate of crystallization in PET, as the cooling nanocomposite melt crystallizes at a temperature 10 °C higher as compared to neat PET. Isothermal crystallization studies also revealed that SWNTs significantly accelerate the crystallization process. WAXD showed oriented crystallization of PET induced by oriented SWNTs in a randomized PET melt, indicating the role of SWNTs as nucleating sites.  相似文献   

8.
Two types of SAXS and WAXS experiments have been made using synchrotron radiation to observe the transformation from smectic to crystalline phases in oriented poly(ethylene terephthalate) (PET). In step-anneal experiments, PET was drawn slowly at 30 °C and then observed after annealing at 5 °C steps up to 100 °C. In the other experiments, time-resolved observations were made while drawing at 90 °C at rates up to 10 s−1. Up to 70 °C the WAXS data in the step-anneal experiments showed the smectic meridional reflection reducing in lateral width, indicating an increase in lateral long range order with annealing. Between 70 and 100 °C, there was a reduction in the intensity of the smectic reflection which correlated with an increase in the intensity of crystalline reflections. The SAXS from the step-anneal experiments showed an intense equatorial streak which has a correlation peak around 20 nm and which diminishes with annealing above 70 °C. It is concluded that this feature is a characteristic of the presence of the mesophase in oriented PET and is due to elongated domains of smectic mesophase with a length >75 nm and with an interdomain spacing of around 20 nm. Between 70 and 100 °C the SAXS data showed additional diffuse diffraction which correlated quantitatively with the crystalline phase and evolved from a cross-like appearance to a well resolved four-point pattern. The time-resolved drawing experiments were limited by the time resolution of the SAXS detector. They showed the same development of four-point diffuse SAXS patterns as was observed in the step-anneal experiments and a very weak equatorial streak. Differences in phase transformation kinetics between the two types of experiment are attributed to the different chain relaxation processes available under different conditions.  相似文献   

9.
The shear‐induced crystallization behavior of PET was investigated by measuring the time‐dependent storage modulus (G′) and dynamic viscosity (η′) with a parallel‐plate rheometer at different temperatures and shear rate. The morphology of shear‐induced crystallized PET was measured by DSC, X‐ray, and polarizing optical microscopy. When a constant shear rate was added to the molten polymer, the shear stress increased with the time as a result of the orientation of molecular chains. The induction time of crystallization is decreased with frequency. Moreover, the rate of isothermal crystallization of PET was notably decreased with increasing temperature. The shape of spherulites is changed to ellipsoid in the direction of shear. In addition, aggregation of spherulites is increased with increasing frequency. Particularly, the row nucleation morphology could be observed under polarized light for ω = 1. From the results of DSC, the melting point and enthalpy have a tendency to decrease slightly with increasing frequency. The crystallite size and perfectness decreased with frequency, which was confirmed with X‐ray data. The unit length of the crystallographic unit cell of the PET increased and the (1 0 3) plane peak increased with increasing frequency. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2640–2646, 2001  相似文献   

10.
The randomly branched poly(ethylene terephthalate) (BPET) was prepared by bulk polycondensation from dimethyl terephthalate (DMT) and ethylene glycol (EG), with 0.4–5.0 mol % (with respect to DMT) of glycerol (GL) as a branching agent. The glass transition and crystallization behavior was studied by differential scanning calorimetry (DSC). It was found that the glass transition temperature of BPET reduced with the increasing content of GL until 1.2 mol %, and then increases a little at high degrees of branching. When compared with a linear PET, the crystallization temperature of BPET from the melt shifted to higher temperature as GL content was smaller than 1.2 mol %, and then became lower while GL load was added. Nonisothermal crystallization kinetics was studied through the modified Avrami analysis. It was revealed that the overall crystallization rate parameter of BPET became larger when the GL content was less than 1.2 mol %, then turned to lower at higher branching degree. This indicated that low degree of branching could enhance the overall crystallization of poly(ethylene terephthalate) (PET), whereas high degree of branching in the range of 3.5–5.0 mol % would block the development of crystallization. On the basis of Hoffman's secondary crystallization theory, the product σσe of the free energy of formation per unit area of the lateral and folding surface was calculated. According to the change of the product σσe with the degree of branching, a possible explanation was presented to illuminate this diverse effect of different degrees of branching on crystallization. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Amorphous poly(ethylene terephthalate) film was uniaxially drawn over a wide range of temperatures from below to above the Tg at a constant strain rate. The geometry of the deformation in macroscopic dimensions of the sample demonstrates that homogeneous deformation can be obtained when the drawing temperature (Tdef) is not lower than 69°C. The change of the cold crystallization peak temperature (Tcc) and crystallinity determined by differential scanning calorimetry and density measurement, respectively, were studied in terms of the Tdef and the draw ratio (λ). The orientation, relaxation, and crystallization during drawing were investigated as a function of Tdef as well as of λ. The results suggest that 69°C is the critical temperature at which the sample with the highest orientation and the least slippage of the molecular chain and without obvious crystallization can be obtained. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2044–2048, 2000  相似文献   

12.
13.
The melting behaviour and the morphology of poly(ethylene terephthalate) crystallized from the melt are reported. In general, dual or triple melting endotherms are seen, and single endotherms are seen when the samples are crystallized above 215°C for long times. The location of the uppermost endotherm was found to be constant below Tc = 230°C, and above that temperature the location depends on Tc. Therefore, we have shown that samples of PET which are crystallized above Tc = 230°C contain perfect crystals only; below Tc = 230°C, they contain perfect and imperfect crystals. Scanning electron microscopy showed that the perfect crystals are the dominant lamellae in the spherulitic structure, while the imperfect crystals are the subsidiary lamellae in the spherulitic structure, The amorphous regions are located between individual lamellae.  相似文献   

14.
The liquid-liquid (L-L) phase separation and crystallization behavior of poly(ethylene terephthalate) (PET)/poly(ether imide) (PEI) blend were investigated with optical microscopy, light scattering, and small angle X-ray scattering (SAXS). The thermal analysis showed that the concentration fluctuation between separated phases was controllable by changing the time spent for demixing before crystallization. The L-L phase-separated specimens at 130 °C for various time periods were subjected to a temperature-jump of 180 °C for the isothermal crystallization and then effects of L-L phase separation on crystallization were investigated. The crystal growth rate decreased with increasing L-L phase-separated time (ts). The slow crystallization for a long ts implied that the growth path of crystals was highly distorted by the rearrangement of the spinodal domains associated with coarsening. The characteristic morphological parameters at the lamellar level were determined by the correlation function analysis on the SAXS data. The blend had a larger amorphous layer thickness than the pure PET, indicating that PEI molecules in the PET-rich phase were incorporated into the interlamellar regions during crystallization.  相似文献   

15.
Poly(ethylene terephthalate) (PET) copolymers containing 4,4′-, 3,5-, and 2,4-benzophenone dicarboxylate chromophores have been synthesized by transesterification of PET with benzophenone 4,4′-dicarboxylic acid (4,4′-BDA), dimethyl benzophenone 4,4′-dicarboxylate (4,4′-BDE), dimethyl benzophenone 3,5-dicarboxylate (3,5-BDE) and dimethyl benzophenone 2,4-dicarboxylate (2,4-BDE). The benzophenone segments in the backbone induce photocrosslinking upon UV irradiation in the solid state most probably by a hydrogen atom abstraction mechanism. The crosslinking rate depends upon the concentration and the structure of chromophores as evidenced by gel content measurements. The photocrosslinking efficiency of 4,4′-benzophenone dicarboxylate containing polymers is higher than for 2,4- or 3,5-benzophenone dicarboxylate containing polymers. Photocrosslinked PET copolymers show increased glass transition temperatures and broadening of melting transitions.  相似文献   

16.
Poly(ethylene terephthalate) with different molar masses and different catalysts and additives (calcium acetate, manganese acetate, triphenylphosphate) was synthesized. The influence of the molar mass distribution, and of the additives used, on the rate of crystallization was studied. Also the dependence of the orientation obtained during drawing at elevated temperatures on the drawing conditions, on the average molar mass, and on the additives was investigated. It is shown that, under the same drawing conditions, an increase in molar mass leads to greater orientation. Also, at very small draw rates the orientation in the samples containing calcium acetate is greater than in those containing manganese acetate.  相似文献   

17.
聚酯固相缩聚等温结晶特性的研究   总被引:1,自引:1,他引:0  
聚酯(PET)固相缩聚(SSP)中切片的结晶性能及其演变影响固相缩聚反应,采用差示扫描量热仪(DSC)和热台偏光显微镜研究了固相缩聚反应前后PET切片的等温结晶特性。结果表明:PET切片在DSC中的等温结晶符合Avrami 方程,等温结晶温度升高,结晶速率常数K值减小,即结晶速率降低;热台偏光显微镜中不同等温结晶温度下形成了不同的球晶形态:黑十字消光图以及环形消光图;随着PET特性粘数(平均分子质量)增大,结晶速率常数K值减小,球晶生长速率减小,Avrami指数n值增大,形成更加复杂的消光图。对于固相缩聚前PET基础切片,球晶最大结晶速率在190℃左右。  相似文献   

18.
Poly(ethylene terephthalate) (PET)-based nanocomposites with graphene or multi-wall carbon nanotubes (MWCNT) were prepared by melt mixing. Aspect ratio, Af, and interparticle distance, λ, of graphene in the nanocomposites were obtained from melt rheology and transmission electron microscopy respectively. λ of PET/graphene nanocomposites was much smaller than λ in PET/MWCNT. For PET/graphene with highest Af, λ became <1 μm at more than 0.5 wt% graphene. Non-isothermal crystallization behavior from the melt was investigated by differential scanning calorimetry. The crystallization temperatures suggest that the nucleation effect of graphene was stronger than that of MWCNT. The half crystallization time of PET/graphene became longer than PET/MWCNT with increasing graphene loading, suggesting that confinement by graphene suppressed the crystal growth rate. XRD analysis indicated that smaller crystals formed in PET/graphene than in PET/MWCNT. From Raman spectroscopy, the π–π interaction between PET and graphene was stronger than that between PET and MWCNT. This stronger interaction in PET/graphene appears to result in formation of crystals with higher perfection.  相似文献   

19.
以对苯二甲酸(PTA)、乙二醇(EG)、异山梨醇(ISB)为原料,通过直接熔融缩聚法合成聚(对苯二甲酸乙二醇酯-co-对苯二甲酸异山梨醇酯)(PEIT)共聚酯。利用差示扫描量热法(DSC)研究了共聚酯的结晶行为,采用Avrami方程分析了共聚酯的等温结晶动力学。结果表明,PEIT共聚酯结晶行为受共聚组成和结晶温度影响。随着ISB用量的增加或结晶温度的降低,共聚酯半结晶周期t1/2增加、结晶速率变慢;ISB摩尔分数超过20%,共聚酯无法结晶。  相似文献   

20.
Crystallization of a series of liquid crystalline copolyesters prepared from p‐hydroxybenzoic acid (HBA), hydroquinone (HQ), terephthalic acid (TA), and poly(ethylene terephthalate) (PET) was investigated by using differential scanning calorimetry (DSC). It was found that these copolyesters are more crystalline than copolyesters prepared from PET and HBA. Insertion of HQ–TA disrupts longer rigid‐rod sequences formed by HBA and thus enhances molecular motion and increases the crystallization rate. The effects of additives on the crystallization of the copolyesters were also studied. Sodium benzoate (SB) and sodium acetate (SA) increase the crystallization rate of the copolyesters at low temperature, but not at high temperature. It is most likely that liquid crystalline copolyesters do not need nucleating agents, and small aggregates of local‐oriented rodlike segments in nematic phase could act as primary nuclei. Chain scission of the copolyesters caused by the reaction with the nucleating agents was proved by the determination of intrinsic viscosity and by the IR spectra. Diphenylketone (DPK) was shown to effectively promote molecular motion of chains, leading to an increase in the crystallization rate at low temperature, but it decreased the crystallization rate at high temperature. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 497–503, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号