首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal property and hydrogen bonding in polymer blends of poly(vinylphenol) (PVPh) and poly(hydroxylether of bisphenol A) (phenoxy) were investigated by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and solid-state nuclear magnetic resonance (NMR). This PVPh/phenoxy blend shows single composition-dependent glass transition temperature over the entire compositions, indicating that the hydrogen bonding exists between the hydroxyl of PVPh and hydroxyl of phenoxy. The negative T g deviation of the PVPh/phenoxy blend indicates the strong intermolecular hydrogen-bonding interaction. The inter-association constant for the PVPh/phenoxy blend is significantly higher than self-association constants of PVPh and phenoxy, revealing that the tendency toward hydrogen bonding between PVPh and phenoxy is more favorable than the intra-hydrogen bonding of the PVPh and phenoxy in the blend.  相似文献   

2.
I.-Hong Lin  Feng-Chih Chang 《Polymer》2009,50(22):5276-9309
A series of miscible crystalline-amorphous diblock copolymers, (poly(?-caprolactone)-b-(vinyl phenol), PCL-b-PVPh) were prepared through sequential ring-opening and controlled living free radical (nitroxide-mediated) polymerizations and then blended with poly(vinyl pyrrolidone) (PVP) homopolymer. Specific interactions, miscibility, and self-assembly morphologies mediated by hydrogen bonding interactions of this new A-B/C type blend, were investigated in detail. Micro-phase separation of these miscible PCL-b-PVPh diblock copolymers occurs by blending with PVP through competitive hydrogen bonding interaction in this A-B/C blend. FTIR, XRD, and DSC analyses provide positive evidences that the carbonyl group of PVP is a significantly stronger hydrogen bond acceptor than PCL, thus the PCL block is excluded from the PVPh/PVP miscible phase to form self-assembly structure. 13C CP/MAS solid-state NMR spectra provide additional evidence confirming that micro-phase separation occurs in the blend system because of the presence of more than two T1ρ(H) values for this A-B/C blend system. According to the result of the FTIR and SAXS results, the smaller molecular weight system contains a greater fraction of the hydrogen-bonded carbonyl group, cause indirectly the high degree of phase separation among these blends. In addition, the SAXS profiles possess a sharp primary peak and highly long range ordered reflections q/q ratios of 1:2:3 at lower PVP content, an indication of the lamellar structure in the blend which is consistent with TEM image. The phase behavior and morphology shifts from lamellar to cylinder structure with further increase in the PVP content.  相似文献   

3.
Shiao-Wei Kuo 《Polymer》2004,45(19):6613-6621
We have investigated the thermal and spectroscopic properties of blends of poly(vinylpyrrolidone) (PVP) with zinc perchlorate. Analyses by differential scanning calorimetry indicates that blending with zinc perchlorate increases the values of Tg of PVP. We calculated the interaction strength of the zinc salt/PVP blends based on an extended configuration entropy model. The presence of ion-dipole interactions between PVP and the zinc salt was confirmed based on Fourier transform infrared (FTIR) and solid-state NMR spectroscopies, which suggest that the zinc cations coordinate with the carbonyl groups of PVP. The single value of measured by solid-state NMR spectroscopy observed for all the zinc salt/PVP blends is smaller than that of pure PVP, which is a finding that indicates that the domain size of this blend system decreases upon increasing the zinc salt content. Based on FTIR and solid-state NMR spectroscopic analyses, we conclude that the ion-dipole interactions in the zinc salt/PVP blend are stronger than the hydrogen bonds in systems such as the poly(vinylphenol) (PVPh)/PVP blend and the PVPh-co-PVP copolymer.  相似文献   

4.
Li-Ting Lee  Sheng Shu Hou 《Polymer》2006,47(25):8350-8359
Phase behavior and miscibility with positive deviation from linear Tg-composition relationship in a copolymer/homopolymer blend system, poly(2-vinyl pyridine)-block-poly(ethylene oxide) (P2VP-b-PEO)/poly(p-vinyl phenol) (PVPh), were investigated by differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR) and solid-state 13C nuclear magnetic resonance (13C NMR), optical microscopy (OM), and scanning electron microscopy (SEM). Optical and electron microscopy results as well as NMR proton spin-lattice relaxation times in laboratory frame () all confirmed the miscibility as judged by the Tg criterion using DSC. In comparison to the literature result on a homopolymer/homopolymer blend of P2VP/PVPh, fitting with the Kwei equation on the Tg-composition relationship for the block-copolymer/homopolymer blend of P2VP-b-PEO/PVPh blend system yielded a smaller q value (q = 120) for P2VP-b-PEO/PVPh than that for P2VP/PVPh blend (q = 160). The FT-IR and 13C NMR results revealed hydrogen-bonding interactions between the pendant pyridine group of P2VP-b-PEO and phenol unit in PVPh, which is responsible for the noted positive deviation of the Tg-composition relationship. Comparison of the shifts of hydroxyl IR absorbance band, reflecting the average strength of H-bonding, indicates a decreasing order of P2VP/PVPh > P2VP-b-PEO/PVPh > PEO/PVPh blends. The PEO block in the copolymer segment tends to defray the interaction strength in the P2VP-b-PEO/PVPh blends because of relative weaker interaction between PEO and PVPh than that between P2VP and PVPh pairs. A comparative ternary (P2VP/PEO)/PVPh blend was also studied as the controlling experiments for comparison to the P2VP-b-PEO/PVPh blend. The thermal behavior and interaction strength in (P2VP/PEO)/PVPh ternary blends are discussed with those in the P2VP-b-PEO/PVPh copolymer/homopolymer blend.  相似文献   

5.
We have synthesized a series of block copolymers of poly(2,6-dimethyl-1,4-phenylene oxide) and polystyrene (PPO-b-PS copolymer) by atom transfer radical polymerization. The PS content in these copolymer systems was determined by using infrared spectroscopy, thermal gravimetric analysis, and solution and solid-state NMR spectroscopy; good correlations exist between these characterization methods. DSC analyses indicated that the PPO-b-PS copolymers have higher glass transition temperatures than do their corresponding PPO/PS blends. Our FTIR and solid-state NMR spectroscopic analyses suggest that the PPO-b-PS copolymers possess stronger specific interactions that are responsible for the observed relatively higher values of Tg. We found one single dynamic relaxation from the dynamic mechanical analysis, which implies dynamic homogeneity exists in the PPO-b-PS copolymer; this result is consistent with the one single proton spin-lattice relaxation time observed in the rotating frame [T1ρ(H)] during solid state NMR spectroscopic analysis. In addition, the 2D FTIR spectroscopy reveals evidence for the stronger interactions between segments of PPO and PS through the formation of π-cation complexes.  相似文献   

6.
A series of high glass transition temperature copolymers based on poly(methyl methacrylate) (PMMA) were prepared by free radical copolymerization of methacrylamide and methyl methacrylate monomers in dioxane solvent. The thermal properties and hydrogen-bonding interactions of these poly(methacrylamide-co-methyl methacrylate) (PMAAM-co-PMMA) copolymers with various compositions were investigated by differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, and solid-state nuclear magnetic resonance (NMR) spectroscopy. A large positive deviation in the behavior of Tg, based on the Kwei equation from DSC analyses, indicates that strong hydrogen bonding exists between these two monomer segments. The FTIR and solid-state NMR spectroscopic analyses give positive evidence for the hydrogen-bonding interaction between the carbonyl group of PMMA and the amide group of PMAAM (e.g. by displaying significant changes in chemical shifts). Furthermore, the proton spin-lattice relaxation time in the rotating frame (T1ρ(H)) has one single value over the entire range of compositions of copolymers, and gives a value shorter than the average predicted. The proton relaxation behavior indicates the rigid nature of the copolymer.  相似文献   

7.
H.L HuangS.H Goh  A.T.S Wee 《Polymer》2002,43(9):2861-2867
The miscibility and specific interactions in poly(2,2,3,3,3-pentafluoropropyl methacrylate-co-4-vinylpyridine) (PFX, X=0, 28, 40 or 54, denoting the mol% of 4-vinylpyridine unit in the copolymer)/poly(p-vinylphenol) (PVPh) blends have been studied by differential scanning calorimetry (DSC), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). DSC studies show that PF0 is immiscible with PVPh, and the presence of a sufficient amount of 4-vinylpyridine units in the copolymer produces miscible blends. AFM images also clearly show that the blends change from heterogeneous to homogeneous upon the incorporation of 4-vinylpyridine unit into the copolymer. FTIR and XPS show the existence of inter-polymer hydrogen bonding between PFX and PVPh. The intensity of the inter-polymer hydrogen bonding increases with increasing 4-vinylpyridine content in the copolymer.  相似文献   

8.
The miscibility and morphology of poly(caprolactone) (PCL) and poly (4-vinylphenol) (PVPh) blends were investigated by using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and 13C solid state nuclear magnetic resonance (NMR) spectroscopy. The DSC results indicate that PCL is miscible with PVPh. FTIR studies reveal that hydrogen bonding exists between the hydroxyl groups of PVPh and the carbonyl groups of PCL. 13C cross polarization (CP)/magic angle spinning (MAS)/dipolar decoupling (DD) spectra of the blends show a 1 ppm downfield shifting of 13C resonance of PVPh hydroxyl-substituted carbons and PCL carbonyl carbons with increasing PCL content. Both FTIR and NMR give evidence of inter-molecular hydrogen bonding within the blends. The proton spin-lattice relaxation in the laboratory frame, T1(H), and in the rotating frame, T(H), were studied as a function of the blend composition. The T1(H) results are in good agreement with thermal analysis; i.e. the blends are completely homogeneous on the scale of 50-80 nm. The T(H) results indicate that PCL in the blends has both crystalline and amorphous phases. The amorphous PCL phase is miscible with PVPh, but the PCL crystal domain size is probably larger than the spin-diffusion path length within the T(H) time-frame, i.e. larger than 2-4 nm. The mobility differences between the crystalline and amorphous phases of PCL are clearly visible from the T(H) data.  相似文献   

9.
Poly(acrylic acid) (PAA) and poly(vinyl pyrrolidone) (PVP) were chosen to prepare polymer complex and blends. The complex was prepared from ethanol solution and the blends were prepared from 1-methyl-2-pyrrolidone solution. DSC results show that the Tgs of the PAA/PVP blends lie between those of the two constituent polymers, whereas Tg of the PAA/PVP complex is higher than both blends and the two constituent polymers. TGA results show that degradation temperature, Td, of PAA increases upon adding PVP in the blend, but thermal stability of the complex is higher than that of the blends as reflected by the higher Td. Both FTIR and high-resolution solid state NMR show strong hydrogen bonding between PAA and PVP by showing significant chemical shift. The T(H) measurement shows that the homogeneity scale for the blend is at ∼20 Å and that for the complex is ∼15 Å.  相似文献   

10.
Graft copolymerization of styrene onto poly(vinyl chloride) (PVC) and polypropylene (PP) was carried out in a supercritical CO2 medium using AIBN as a free radical initiator. The supercritical CO2 medium served as a reaction medium in addition to being a solvent for the styrene monomer and the free radical initiator. The reaction temperature and pressure were kept above the critical points of the solvent‐monomer mixture to form a homogeneous single‐phase medium. The resulting graft copolymers were characterized using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and nuclear magnetic resonance (NMR) techniques. The weight percent of grafting was determined using IR absorbance ratio technique. TGA results showed that the thermal stabilily of grafted copolymer of PVC was better than that of PVC, while grafted copolymer of PP had poorer thermal stability than PP. DSC results showed that glass transition temperatures (Tg's) of the grafted copolymers were higher than those of the starting polymers PVC and PP. The presence of polystyrene attached to the backbone polymer was confirmed by 1H NMR and 13C NMR analyses.  相似文献   

11.
G Laruelle 《Polymer》2004,45(15):5013-5020
Hybrid inorganic/organic materials consisting of a poly(n-butyl acrylate)-b-poly(styrene) diblock copolymer anchored to silica particles were synthesized via ‘grafting from’ technique using a controlled/living free radical polymerization named stable free radical polymerization. XPS and FTIR analysis were used to control the effectiveness of the chemical modification of the silica particles. Thermal characterizations were performed by thermal gravimetric analysis (TGA) and by differential scattering calorimetry (DSC). The TGA permitted the determination of the quantity of grafted polymer and thus the grafting density; DSC was used to study the influence of the silica and blocks of the copolymer on their thermal behaviors. The glass transition temperature of the grafted copolymers was compared to these of free polymers or copolymers homologues.  相似文献   

12.
The miscibility behavior of ternary blends of poly (vinyl phenol) (PVPh)/poly (vinyl pyrrolidone) (PVP)/poly (ethyl methacrylate) (PEMA) was investigated mainly with calorimetry. PVPh is miscible with both PVP and PEMA on the basis of the single Tg observed over the entire composition range. FTIR was used to study the hydrogen bonding interaction between the hydroxyl group of PVPh and the carbonyl group of PVP and PEMA at various compositions. Furthermore, the addition of PVPh is able to enhance the miscibility of the immiscible PVP/PEMA and eventually transforms it into a miscible blend, especially when the ratio between PVP/PEMA is 3:1, probably because of favorable physical interaction. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1205–1213, 2006  相似文献   

13.
Chen-Lung Lin  Feng-Chih Chang 《Polymer》2006,47(10):3436-3447
Experimental results indicate that the PEO was miscible with PVPh-r-PMMA copolymers as shown by the existence of single composition-dependent glass transition temperature over the entire compositions. However, the PVPh-b-PMMA copolymer with PEO shows a like closed loop phase-separated region in this copolymer/homopolymer blend system. Furthermore, FTIR reveals that at least three competing equilibrium are present in these blends; self-association (hydroxyl-hydroxyl), interassociation (hydroxyl-carbonyl) of PVPh-co-PMMA, and hydroxyl-ether interassociation between PVPh and PEO. Based on the Painter-Coleman Association Model (PCAM), a value for inter-association, KC=300 is obtained in PVPh-b-PMMA/PEO blend system at room temperature. Although the relative ratio of interassociation equilibrium constant of PEO to PMMA is larger in PVPh-b-PMMA/PEO blend system, the PVPh-r-PMMA/PEO blend system has greater Δν and greater homogeneity at the molecular scale than the PVPh-b-PMMA/PEO blend system because of the ΔK effect.  相似文献   

14.
A new kind of A-B-A block copolymers with good biocompatibility and adjustable degradability was synthesized by ring-opening polymerization, in which DL-lactide polymerized and grew from the two ends of polyvinylpyrrolidone (PVP). The well-defined triblock structures of copolymers were characterized by GPC, 1H NMR, FTIR and DSC. There were two pronounced glass transition temperatures which showed apparent microphase separations between hydrophilic PVP segment and hydrophobic poly(dl-lactide) (PDLLA) segments. The hydrolytic degradation of PDLLA and copolymers in phosphate buffer solution (PBS, pH = 7.4) showed that the degradation rate of copolymers apparently became faster in comparison with that of PDLLA homopolymer, and increased with increasing PVP content. The measurements through 1H NMR and FTIR showed that the degraded fragments contained PDLLA oligomers, lactates and soluble chains composed of PVP blocks attached with short PDLLA ones.  相似文献   

15.
The effect of polymer structure on blend miscibility with polyvinylphenol (PVPh) has been studied for at least one polymer from a variety of polymer classes with potential hydrogen-bond accepting groups: polyesters (aliphatic and aromatic), polycarbonates, polyimides, polyamides, polysulfones, polyurethanes, polyethers, polysiloxanes, poly(amideimides), and cellulose esters. Many of the polyesters, polyamides, and cellulose esters showed evidence of interaction and miscibility with PVPh. In most of the other cases, there was no sign of miscibility. Generally good correlation exists between thermal behavior and infrared spectral data. Where there is significant interaction seen between the polymers by FTIR, substantial miscibility is seen by DSC analysis. In some cases, the phase behavior depended on the blend preparation scheme. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
The miscibility of poly(methylmethacrylate) (PMMA) and (trifluoroethyl methacrylic ester-MMA) copolymers (MMA-MATRIFE) with poly(vinylidene fluoride) (PVDF) and VDF copolymers was studied by differential scanning calorimetry (DSC) as a function of the fluorinated copolymer crystallinity and fluoroalkyl methacrylic ester content in the methacrylic copolymer. Miscibility limits were found identical whatever be the blend preparation technique, although solution mixing induced some polymer fractionation, thus giving slightly higher blend glass transition temperature. The miscibility domain widths are reduced when using MMA-MATRIFE copolymers as compared to PMMA-containing blends and miscibility limits are dependent on the MATRIFE content in the methacrylic copolymer. Moreover, PVDF or VDF copolymer melting enthalpy decrease is associated to a partial dissolution of the semi-crystalline polymer in PMMA or MMA-MATRIFE copolymer above the total miscibility limit. The evolution of dynamic moduli as a function of blends composition confirms the miscibility limits determined by DSC. The Flory-Huggins interaction parameters were determined through the melting point depression analysis and compared to correlate the intensity of inter- or intra-molecular interactions between the polymers to the postulated ‘acidity’ of hydrogen atoms in various VDF-containing polymers. The interaction parameter χ12 increases with the fluoroalkyl methacrylic ester content, corresponding to a prevalence of intra-molecular on inter-molecular interactions in these blends. Similarly, PVDF offers higher χ12 values as compared to VDF-TFE or particularly to VDF-TrFE copolymers. These results highlight the importance of the nature of fluorinated polymers and of the inter- or intra-molecular character of dipolar interactions on both, copolymer miscibility and interaction parameter values.  相似文献   

17.
In this study, we synthesized a poly(cyclohexene carbonate) (PCHC) through alternative ring-opening copolymerization of CO2 with cyclohexene oxide (CHO) mediated by a binary LZn2OAc2 catalyst at a mild temperature. A two-dimensional Fourier transform infrared (2D FTIR) spectroscopy indicated that strong intramolecular [C–H···O=C] hydrogen bonding (H-bonding) occurred in the PCHC copolymer, thereby weakening its intermolecular interactions and making it difficult to form miscible blends with other polymers. Nevertheless, blends of PCHC with poly(vinyl phenol) (PVPh), a strong hydrogen bond donor, were miscible because intermolecular H-bonding formed between the PCHC C=O units and the PVPh OH units, as evidenced through solid state NMR and one-dimensional and 2D FTIR spectroscopic analyses. Because the intermolecular H-bonding in the PCHC/PVPh binary blends were relatively weak, a negative deviation from linearity occurred in the glass transition temperatures (Tg). We measured a single proton spin-lattice relaxation time from solid state NMR spectra recorded in the rotating frame [T(H)], indicating full miscibility on the order of 2–3 nm; nevertheless, the relaxation time exhibited a positive deviation from linearity, indicating that the hydrogen bonding interactions were weak, and that the flexibility of the main chain was possibly responsible for the negative deviation in the values of Tg.  相似文献   

18.
The behavior of lithium ions in a comb-like polymer electrolyte with a chelating functional group have been characterized by differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), Fourier transform infrared (FTIR) spectroscopy, ac impedance and 7Li solid-state NMR measurements. The comb-like copolymer is synthesized by poly(ethylene glycol-methyl ether methacrylate) (PEGMEM) and (2-methylacrylic acid 3-(bis-carboxymethylamino) -2-hydroxy-propyl ester) (GMA-IDA). FTIR and 7Li solid-state NMR spectra demonstrate the interactions of Li+ ions with both the ether oxygen of the PEGMEM and the nitrogen atom of the GMA-IDA segments. Moreover, 7Li solid-state NMR shows that the lithium ions are preferentially coordinated to the GMA-IDA segment. The Tg increases for the copolymers doped with LiClO4. These results indicate the interactions of Li+ with both PEGMEM and GMA-IDA segments form transient cross-links. The Vogel-Tamman-Fulcher (VTF)-like behavior of conductivity implies the coupling of the charge carriers with the segmental motion of the polymer chains. The dependence of the maximum conductivity on the composition of the copolymers and the doping lithium ion concentration was determined. The GMA-IDA unit in the copolymer improves the dissociation of the lithium salt, the mechanical strength and the conductivity.  相似文献   

19.
A series of conducting copolymers were synthesized by chemical oxidative polymerization of imidazole (Imi) and pyridine (Py) in acetonitrile medium at ambient temperature. The yield, solubility, and conductivity of the copolymers were measured by changing the Imi/Py molar ratio from 0/100 to 100/0. The as‐prepared Imi/Py conducting copolymers were characterized by UV‐Visible, FTIR, 1H‐NMR, DSC, TGA, and XRD. The results suggest that the resulting copolymers were more easily soluble in most of the organic solvents than in polyimidazole. The polymer obtained is a real copolymer containing imidazole and pyridine units, but the Imi content calculated on the basis of the proton NMR spectra is lower than feed Imi content. The thermostability of the Imi/Py copolymer increases with increasing Imi unit content. The copolymers show comparatively higher conductivity and higher thermal stability than the homopolymer polypyridine and are lower than those of polyimidazole. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
New bio‐based diblock copolymers were synthesized from poly(lactic acid) (PLA) and natural rubber (NR). NR polymer chains were modified to obtain hydroxyl telechelic natural rubber oligomers (HTNR). Condensation polymerization between PLA and HTNR was performed at 110°C during 24 or 48 h. The molecular weight of PLA and HTNR and the molar ratio PLA : HTNR were varied. The new ester linkage in the diblock copolymers was determined by 1H‐NMR. The molecular weight of the diblock copolymers determined from SEC agreed with that expected from calculation. The thermal behavior and degradation temperature were determined by DSC and TGA, respectively. The diblock copolymers were used as a toughening agent of PLA and as a compatibilizer of the PLA/NR blend. PLA blended with the diblock copolymer showed higher impact strength, which was comparable to the one of a PLA/NR blend. The former blend showed smaller dispersed particles as showed by SEM images, indicating the increase in miscibility in the blend due to the PLA block. The compatibilization was effective in the blends containing ~10 wt % of rubber. At a higher rubber content (>10 wt %), coalescence of the NR and diblock copolymer was responsible of the larger rubber diameter in the blends, which causes a decrease of the impact strength. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41426.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号