首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several home made and commercially available polyethylene (PE) samples grafted with maleic anhydride (MA) (PE-g-MA) were used as compatibilizer precursors (CPs) for the reactive blending of low density PE (LDPE) with polyamide-6 (PA). Scope of the work was to compare the effectiveness of these CPs with that of a number of ethylene-acrylic acid copolymers (EAA), which had been employed in a previous study for the reactive compatibilization of the same blends, and to get a deeper insight into the coupling reactions producing the PA-g-CP copolymers that are thought to act as the true compatibilizers in these systems. To this end, binary CP/LDPE and CP/PA and ternary LDPE/PA/CP blends were prepared with a Brabender mixer and were characterized by DSC, SEM and solvent fractionation. The results show that the PE-g-MA copolymers react more rapidly with PA than the EAA copolymers and that their CP effectiveness depends critically on the microstructure and the molar mass of their PE backbones. In particular, the CPs produced by functionalization of LDPE were shown to be miscible with this blend component and to be scarcely available at the interface where reaction with PA is expected to occur. Conversely, the CPs prepared from the HDPE grades were immiscible with LDPE and showed better CP performance. Whereas the effectiveness of the EAA copolymers studied earlier had been shown to increase with an increase in the concentration of the carboxyl groups, the concentration of the succinic anhydride groups of the PE-g-MA CPs studied in this work was found to play a minor role, at least in the investigated range (0.3-3.0 wt% MA).  相似文献   

2.
S. Filippi  N. Dintcheva  P. Magagnini 《Polymer》2005,46(19):8054-8061
The study deals with the effectiveness of maleic anhydride grafted styrene-b-ethylene-co-propylene copolymer (SEPMA) as compatibilizer precursor (CP) for blends of low density polyethylene (LDPE) with polyamide-6 (PA). The CP was produced by grafting MA onto SEP in the melt. The specific interactions between the CP and the blends components have been investigated through characterizations of the binary LDPE/CP and PA/CP blends. The compatibilizing efficiency of the MA-grafted SEP, as revealed by the thermal properties and the morphology of the compatibilized blends, has been shown to be excellent. The morphology, as well as the mechanical properties of the compatibilized with SEPMA 75/25 w/w and 25/75 w/w LDPE/PA6 blends have been compared with those of the blends compatibilized with maleic anhydride functionalized HDPE sample (1-HDPE-g-MA) and with a commercial maleic anhydride grafted styrene-b-(ethylene-co-1-butene)-b-styrene copolymer (SEBSMA1). The results show that the strong compatibilizing efficiency of SEPMA is comparable with that of SEBSMA1, while 1-HDPE-g-MA exhibits a slightly lower activity, particularly for the blends, in which PA is the matrix phase.  相似文献   

3.
Summary: The effectiveness of some thermoplastic elastomers grafted with maleic anhydride (MA) or with glycidyl methacrylate (GMA) as compatibilizer precursors (CPs) for blends of low density polyethylene (LDPE) with polyamide‐6 (PA) has been studied. The CPs were produced by grafting different amounts of MA or GMA onto a styrene‐block‐(ethylene‐co‐1‐butene)‐block‐styrene copolymer (SEBS) (KRATON G 1652), either in the melt or in solution. A commercially available SEBS‐g‐MA copolymer with 1.7 wt.‐% MA (KRATON FG 1901X) was also used. The effect of the MA concentration and of other characteristics of the SEBS‐g‐MA CPs was also studied. The specific interactions between the CPs and the blends components were investigated through characterizations of the binary LDPE/CP and PA/CP blends, in the whole composition range. It was demonstrated that the SEBS‐g‐GMA copolymers display poor compatibilizing effectiveness due to cross‐linking resulting from reactions of the epoxy rings of these CPs with both the amine and the carboxyl end groups of PA. On the contrary, the compatibilizing efficiency of the MA‐grafted elastomers, as revealed by the thermal properties and the morphology of the compatibilized blends, was shown to be excellent. The results of this study confirm that the anhydride functional groups possess considerably higher efficiency, for the reactive compatibilization of LDPE/PA blends, than those of the ethylene‐acrylic acid and ethylene‐glycidyl methacrylate copolymers investigated in previous works.

SEM micrograph of the 75/25 LD08/PA blend (with 2 phr SEBSMA1).  相似文献   


4.
A sample of polyamide-6 (PA) was blended with low density polyethylene (LDPE) in the 80/20 wt/wt ratio, either without and with 2 phr of an ethylene-acrylic acid copolymer (EAA), Which was known to behave as a compatibilizer precursor, and the effect of the addition of small amounts (0.2 or 0.35 phr) of a fourth component, 2,2′-(1,3-phenylene)-bis(2-oxazoline) (PBO), was investigated. The reactions of PBO with EAA, PA and their blends were studied by recording as a function of time the torque applied to the blending apparatuses and by studying the solubility behavior of the products in formic acid. The PALDPE blends were prepared in a co-rotating twin screw extruder and were characterized by Molau tests, differential scanning calorimetry, scanning electron microscopy, rheology, and determination of the ultimate mechanical properties, including impact tests. The results indicate that the effectiveness of EAA as a compatibilizer precursor is considerably enhanced when PBO is added into the blends. It is thought that the reactions of PBO with the free carboxyl groups of EAA and with the amine or carboxyl end groups of PA run, at least in part, toward the formation of PA-g-EAA copolymers acting as the true compatibilizers for these blends.  相似文献   

5.
Multilayer films combine properties of different polymers in a single material, attending specifications to applications such as packaging. However, the mechanical recycling for this material king is commercially less interesting because the polymeric components cannot easily be separated and the direct mechanical processing of the material leads to the immiscible and incompatible polymeric blends. The aim of this study was to evaluate properties of the blends of low-density polyethylene (LDPE) and polyamide 6 (PA6) generated from mechanical recycling of multilayer films constituted by LDPE and PA6, containing maleic anhydride grafted polyethylene (PE-g-MA) as compatibilizing agent and different amounts of virgin PA6. The LDPE/PA6 blends are immiscible for all composition and the use of PE-g-MA has showed little effect on the compatibility of the blends with high content of PA6. However, LDPE/PA6 blends with PA6 content up to 20 wt % showed considerable performance for mechanical performance that can justify the mechanical recycling of the material. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47456  相似文献   

6.
An ethylene‐acrylic acid copolymer (EAA), either alone or combined with a low molar mass bis‐oxazoline compound (PBO), has been used as a compatibilization promoter for blends of polyamide‐6 (PA6) with low‐density polyethylene (LDPE). The effect of compatibilization on blend processability in injection molding operations and on the properties of the molded specimens has been studied. In the absence of compatibilization, the injection molded articles were shown to have low‐quality surface appearance and poor mechanical properties. Both these characteristics were appreciably improved as a result of reactive compatibilization of the blends with EAA and, even more, with the EAA‐PBO couple. In fact, the finished articles prepared by injection molding of the quaternary blends were shown to possess good surface appearance, fine and stable morphology and satisfactory mechanical properties. The results confirm the conclusion of a previous study, i.e., that the PBO fourth component may promote the in situ formation of PA6‐g‐EAA copolymers, by reaction with both the functional groups of PA6 and the carboxyl groups of EAA. Polym. Eng. Sci. 44:1732–1737, 2004. © 2004 Society of Plastics Engineers.  相似文献   

7.
In the present study, low-density polyethylene (LDPE) and plasticized starch (PLST) blends, containing different percentages of PLST, were prepared. In these blends, two different polyethylene/maleic anhydride graft (PE-g-MA) copolymers containing 0.4 and 0.8 mol % anhydride groups, respectively, were added as compatibilizers at 10 wt % PLST. The compatibilization reaction was followed by FTIR spectroscopy. The morphology of the blends was studied using scanning electron microscopy (SEM). It was found that as the amount of anhydride groups in the copolymers increases a finer dispersion of PLST in the LDPE matrix is achieved. This is reflected in the mechanical properties of the blends and especially in the tensile strength. The blends compatibilized with the PE-g-MA copolymer containing 0.8 mol % anhydride groups have a higher tensile strength, which in all blends, even in those containing 20 and 30 wt % PLST, is similar to that of pure LDPE. The biodegradation of the blends followed the exposure to activated sludge. It was found that the compatibilized blends have only a slightly lower biodegradation rate compared to the uncompatibilized blends. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1503–1521, 1998  相似文献   

8.
A comparative study of the structure and properties of two‐phase blends of polyamide 6 (PA6) and low‐density polyethylene (LDPE) modified in the course of reactive extrusion, by grafting of itaconic acid (IA) without neutralization of carboxyl groups (LDPE‐g‐IA) and with neutralized carboxyl groups (LDPE‐g‐IA?M+) was carried out. It was shown that 30 wt % of LDPE‐g‐IA?M+ introduced to PA6 resulted in blends of higher Charpy impact strength compared with that of PA6/LDPE‐g‐IA blends. The maximum increase was achieved when Mg(OH)2 was used as a neutralizing agent. The blend morphology has a two‐phase structure with blurred interphases because of increased adhesion between the phases. The neutralization of carboxyl groups in grafted IA did not lead to two‐phase morphology of blends, which had a negative influence on the mechanical properties. It is believed that the differences in the impact strength were caused by the influence of the added neutralizing agents on the structure of interphases, which depends on both the interfaces adhesion and structural effects resulting from the nucleating behavior of the neutralizing agent. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1702–1708, 2004  相似文献   

9.
Blends of low density polyethylene (LDPE) and polyamide 6 (PA6), compatibilized with an ethylene‐acrylic acid copolymer (EAA), either alone or combined with a low molar mass bis‐oxazoline compound (PBO), have been processed in film blowing operations and the properties of the films have been investigated. Without of compatibilization, the filmability of the blend was very poor and no significant specimen was collected. As a result of the reactive compatibilization, the blends with EAA and even more with the EAA‐PBO, were processed successfully in film blowing. The films of the quaternary blends were shown to possess satisfactory mechanical properties as a result of fine and stable morphology. The results confirm the conclusion of a previous study, i.e., that the PBO fourth component may promote the in situ formation of PA6‐g‐EAA copolymers by reaction with both the functional groups of PA6 and the carboxyl groups of EAA. POLYM. ENG. SCI., 45:1297–1302, 2005. © 2005 Society of Plastics Engineers  相似文献   

10.
Modification of low‐density polyethylene (LDPE) hyperbranched grafting with a maleic anhydride (MAH) was carried out using corotating twin screw extruder in the presence of benzoyl peroxide. The LDPE/polyamide 6 (PA6) and LDPE‐g‐MAH/PA6 blends were obtained with a corotating twin screw extruder. The melt viscosity of the grafted LDPE was measured by a capillary rheometer. The grafted copolymer was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy The effects of variations in temperature, PA6 loading, and benzoyl peroxide and MAH concentration were investigated. The results show that most MAH monomers were grafted onto the LDPE at a lower MAH concentration. With the proper selection of the reaction parameters, we obtained a grafting degree higher than 4.9%. Mechanical test results indicate that the blends had good interfacial adhesion and good stability of the phase structure during heating, which was reflected in the mechanical properties. Furthermore, the results reveal that the tensile strength of the blends increased continuously with increasing PA6 content. Moreover, the home‐synthesized maleated LDPE could be used for the compatibilization of LDPE/PA 6 blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
The effect of the molecular structure of styrene–butadiene (SB) block copolymers and ethene–propene (EPM) random copolymers on the morphology and tensile impact strength of low‐density polyethylene (LDPE)/polystyrene (PS) (75/25) blends has been studied. The molecular characteristics of SB block copolymers markedly influence their distribution in LDPE/PS blends. In all cases, an SB copolymer is present not only at the interface but also in the bulk phases; this depends on its molecular structure. In blends compatibilized with diblock copolymers, compartmentalized PS particles can also be observed. The highest toughness values have been achieved for blends compatibilized with triblock SB copolymers. A study of the compatibilization efficiency of SB copolymers with the same number of blocks has shown that copolymers with shorter PS blocks are more efficient. A comparison of the obtained results with previous results indicates that the compatibilization efficiency of a copolymer strongly depends both on the blend composition and on the properties of the components. The compatibilization efficiency of an EPM/SB mixture is markedly affected by the rheological properties of the copolymers. The addition of an EPM/SB mixture containing EPM with a higher viscosity leads to a higher improvement or at least the same improvement in the tensile impact strength of a compatibilized blend as the same amount of neat SB. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
The effects of branching characteristics of low-density polyethylene (LDPE) on its melt miscibility with high-density polyethylene (HDPE) were studied using molecular simulation. In particular, molecular dynamics (MD) was applied to compute Hildebrand solubility parameters (δ) of models of HDPE and LDPE with different branch contents at five temperatures that are well above their melting temperatures. Values computed for δ agreed very well with experiment. The Flory-Huggins interaction parameters (χ) for blends of HDPE and different LDPE models were then calculated using the computed δ values. The level of branch content for LDPE above which the blends are immiscible and segregate in the melt was found to be around 30 branches/1000 long chain carbons at the chosen simulation temperatures. This value is significantly lower than that of butene-based linear low-density polyethylene (LLDPE) (40 branches/1000 carbons) in the blends with HDPE computed by one of the authors (polymer 2000; 41:8741). The major difference between LDPE and LLDPE models is that each modeled LDPE molecule has three long chains while each modeled LLDPE molecule had only one long chain. The present results together with those of the LLDPE/HDPE blends suggest that the long chain branching may have significant influence on the miscibility of polyethylene blends at elevated temperatures.  相似文献   

13.
The effect of styrene–butadiene block copolymers (SB) with varying number of blocks and length of styrene blocks on the morphology, rheology, and impact strength of 4/1 polystyrene/low‐density polyethylene (PS/LDPE) blends was studied. The scanning and transmission electron microscopy and X‐ray scattering were used for determination of the size of LDPE particles and the localization and structure of SB copolymers in blends. It is shown that the dependence of the LDPE particle size on the amount of added SB and localization of SB copolymers in blends is predominantly controlled by the length of their styrene blocks. It follows from thermodynamic considerations that the reason is the difference in composition asymmetry between SB with short and long styrene blocks. Coalescence of particles of SB having short styrene blocks at the surface of LDPE droplets and movement of SB with long styrene blocks to the PS–LDPE interface were observed during annealing of PS/LDPE/SB blends. Pronounced migration of SB copolymer during annealing shows that their localizations in blends in steady state on long steady mixing and at thermodynamic equilibrium are different. The values of tensile impact strength of PS/LDPE/SB blends correlate well with the size of LDPE particles and the amount of SB at the interface. Viscosity of PS/LDPE/SB depends on molecular structure of SB copolymers by a manner different from that of tensile impact strength. The results of this study and literature data lead to the conclusion that the compatibilization efficiency of SB copolymers for a certain polystyrene‐polyolefin pair is a function of not only molecular parameters of SB but also of the polystyrene/polyolefin ratio, the amount of SB in a blend, and mixing and processing conditions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2803–2816, 2006  相似文献   

14.
The emulsification efficiency of three different block copolymers consisting of hydrogenated polybutadiene (HPB) and polystyrene (PS), i.e. a pure diblock , a tapered diblock and a triblock copolymer has been compared in low density polyethylene/polystyrene (LDPE/PS) blends rich in polyethylene. The comparison relies upon the ability of these potential interfacial agents to stabilize fine phase dispersion and to promote good interfacial adhesion. Based on the phase morphology, the ultimate tensile properties and the dynamic viscosity of the modified blends, the tapered diblock copolymer is clearly the most efficient emulsifier. For instance a plateau is observed in the property-copolymer content dependence when 2 wt% tapered diblock are used compared to ca. 5 wt% in case of the pure diblock. In contrast, no plateau is observed when the triblock copolymer is used. This is assumed to result from a less quantitative localization of these two copolymers i.e. the pue diblock or the triblock at the LDPE/PS interface.  相似文献   

15.
Blends containing polyethylene (LDPE, LLDPE, or LDPE-LLDPE) with different weight percent of styrene-isoprene-styrene (SIS) triblock copolymers have been obtained by extrusion-blowing. The morphology of the blends, investigated by scanning electron microcopy (SEM), has been related to composition but also to different parameters such as viscosity, nature of the polyethylene phase, and extrusion conditions. A large range of morphologies is observed and indicates that the main factors determining the morphology of the blends are the composition, the elongational fields at the exit of the die and, in certain limits, the relative viscosities of the components of the blends.  相似文献   

16.
The reactive compatibilization effect of a small molecule, bismaleimide (BMI), on poly(butylene terephthalate) (PBT)/low‐density polyethylene (LDPE) and PBT/ethylene propylene diene (EPDM) rubber blends were investigated. All the blends were prepared by melt blending in the mixing chamber of a Haake Rheocord. The particle size of dispersed phase was reduced by >ten times by adding 1.2 wt % of BMI as observed with scanning electron microscopy. The torque‐time curve recorded during mixing showed that the addition of BMI leads to a significant increase in the viscosity of PBT, LDPE, EPDM, and the blends. This indicates that a chemical reaction has taken place. It was confirmed that free radicals are involved in the reactions because the addition of a stabilizer to the blends has removed all the compatibilizing effect, and the torque‐time curve does not show any increase in viscosity. A possible mechanism of compatibilization is proposed. The shear forces during melt mixing cause the rupture of chemical bond in the polymers, which form macroradicals of PBT, LDPE, or EPDM. These macroradicals react with BMI to form PBT‐BMI‐LDPE or PBT‐BMI‐EPDM copolymers. These in situ‐formed copolymers act as compatibilizers to give a significant refinement of the blend morphology. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2049–2057, 1999  相似文献   

17.
Low density polyethylene (LDPE) blends with different additives were exposed to various doses of electron beam irradiation. The additives used were styrene-ethylene-butylene-styrene-block copolymers (SEBS), styrene-ethylene-butylene-styrene-block copolymer grafted with maleic anhydride (SEBS-g-MA) and mineral compounds. The structure–property behavior of electron beam irradiated blends was characterized in terms of mechanical, thermal, and electrical resistivity properties. The results indicated that the unirradiated LDPE blends with the different compositions showed improved mechanical properties, thermal and volume resistivity properties than pure LDPE. However, the improvement in properties of unirradiated blends by using SEBS-g-MA was higher than using SEBS copolymer. Further improvement in the mechanical, thermal and electrical properties of the LDPE blends was achieved after electron beam irradiation. The limited oxygen index (LOI) data revealed that the LDPE/SEBS-g-MA/ATH blend was changed from combustible to self-extinguishing material after electron beam irradiation to a dose of 100 kGy. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
19.
A static mixer assembled on a Brabender plastograph has been used as a blender of immiscible polymers like low-density polyethylene (LDPE) and polyamide 6 (PA6). The shearing rates were 50 and 100 s-1. The properties of polymer blends were tested using a thermomechanical method. It was found that a tested prototype static mixer imparted good uniformity to the blends' structure on a level similar to molecular distribution of components. This phenomenon is called mechanical compatibilization. High effectiveness of mixing was observed for LDPE–PA6 compositions with and without a compatibilizer. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:1807–1811, 1997  相似文献   

20.
Oxygen and water vapor permeability studies were carried out on binary polyethylene/polyamide immiscible blends incorporating three polyethylene resins (LDPE, LLDPE, and HDsPE), and three polyamide resins (PA-6, PA-6,6, and modified PA-6,6m). It was found that the incorporation of PA into PE reduces the oxygen permeability while water vapor permeability is increased. In the range of 0 to 30 weight percent of PA, the oxygen permeability of PE was reduced by a factor of 2.8 to 3.6. Maximum water vapor permeabilities increased: for HDPE by a factor of about 2.6 to 3.1 and for LDPE and LLDPE blends by about 1.6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号