首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The melting behavior of poly(butylene succinate) (PBSU) in miscible blends with poly(ethylene oxide) (PEO), which is a newly found polymer blends of two crystalline polymers by our group, has been investigated by conventional differential scanning calorimetry (DSC). It was found that PBSU showed double melting behavior after isothermal crystallization from the melt under certain crystallization conditions, which was explained by the model of melting, recrystallization and remelting. The influence of the blend composition, crystallization temperature and scanning rate on the melting behavior of PBSU has been studied extensively. With increasing any of the PEO composition, crystallization temperature and scanning rate, the recrystallization of PBSU was inhibited. Furthermore, temperature modulated differential scanning calorimetry (TMDSC) was also employed in this work to investigate the melting behavior of PBSU in PBSU/PEO blends due to its advantage in the separation of exotherms (including crystallization and recrystallization) from reversible meltings (including the melting of the crystals originally existed prior to the DSC scan and the melting of the crystals formed through the recrystallization during the DSC scan). The TMDSC experiments gave a direct evidence of this melting, recrystallization and remelting model to explain the multiple melting behavior of PBSU in PBSU/PEO blends.  相似文献   

2.
Kai Cheng Yen  Kohji Tashiro 《Polymer》2009,50(26):6312-6322
Crystalline/crystalline blends of two polymorphic aryl-polyesters, poly(hexamethylene terephthalate) (PHT) and poly(heptamethylene terephthalate) (PHepT), were prepared and the crystallization kinetics, polymorphism behavior, spherulite morphology, and miscibility in this blend system were probed using polarized-light optical microscopy (POM), differential scanning calorimetry (DSC), temperature-resolved wide-angle X-ray diffraction (WAXD), and small angle X-ray scattering (SAXS). The PHT/PHepT blends of all compositions were proven to be miscible in the melt state or quenched amorphous glassy phase. Miscibility in PHT/PHepT blend leads to the retardation in the crystallization rate of PHT; however, that of PHepT increases, being attributed to the nucleation effects of PHT crystals which are produced before the growth of PHepT crystals. In the miscible blend of polymorphic PHT with polymorphic PHepT, the polymorphism states of both PHT and PHepT in the blend are influenced by the other component. The fraction of the thermodynamically stable β-crystal of PHT in the blend increases with increasing PHepT content when melt-crystallized at 100 °C. In addition, when blended with PHT, the crystal stability of PHepT is altered and leads to that the originally polymorphic PHepT exhibits only the β-crystal when melt-crystallized at all Tc's. Apart from the noted polymorphism behavior, miscibility in the blend also shows great influence on the spherulite morphology of PHT crystallized at 100 °C, in which the dendritic morphology corresponding to the β-crystal of PHT changes to the ring-banded in the blend with higher than 50 wt% PHepT. In blends of PHT/PHepT one-step crystallized at 60 °C, PHepT is located in both PHT interlamellar and interfibrillar region analyzed using SAXS, which further manifests the miscibility between PHT and PHepT.  相似文献   

3.
Four blends of poly(hydroxybutyrate) (PHB) and poly(butylene succinate) (PBSU), both biodegradable semicrystalline polyesters, were prepared with the ratio of PHB/PBSU ranging from 80/20 to 20/80 by co-dissolving the two polyesters in N,N-dimethylformamide and casting the mixture. Differential scanning calorimetry (DSC) and optical microscopy (OM) were used to probe the miscibility of PHB/PBSU blends. Experimental results indicated that PHB showed some limited miscibility with PBSU for PHB/PBSU 20/80 blend as evidenced by the small change in the glass transition temperature and the depression of the equilibrium melting point temperature of the high melting point component PHB. However, PHB showed immiscibility with PBSU for the other three blends as shown by the existence of unchanged composition independent glass transition temperature and the biphasic melt. Nonisothermal crystallization of PHB/PBSU blends was investigated by DSC using various cooling rates from 2.5 to 10 °C/min. During the nonisothermal crystallization, despite the cooling rates used two crystallization peak temperatures were found for PHB/PBSU 40/60 and 60/40 blends, corresponding to the crystallization of PHB and PBSU, respectively, whereas only one crystallization peak temperature was observed for PHB/PBSU 80/20 and 20/80 blends. However, it was found that after the nonisothermal crystallization the crystals of PHB and PBSU actually co-existed in PHB/PBSU 80/20 and 20/80 blends from the two melting endotherms observed in the subsequent DSC melting traces, corresponding to the melting of PHB and PBSU crystals, respectively. The subsequent melting behavior was also studied after the nonisothermal crystallization. In some cases, double melting behavior was found for both PHB and PBSU, which was influenced by the cooling rates used and the blend composition.  相似文献   

4.
Zhaobin Qiu  Wantai Yang 《Polymer》2006,47(18):6429-6437
Biodegradable crystalline poly(butylene succinate) (PBSU) can form miscible polymer blends with amorphous poly(vinyl phenol) (PVPh). The isothermal crystallization kinetics and morphology of neat and blended PBSU with PVPh were studied by differential scanning calorimetry (DSC), optical microscopy (OM), wide angle X-ray diffraction (WAXD), and small angle X-ray scattering (SAXS) in this work. The overall isothermal crystallization kinetics of neat and blended PBSU was studied with DSC in the crystallization temperature range of 80-88 °C and analyzed by applying the Avrami equation. It was found that blending with PVPh did not change the crystallization mechanism of PBSU, but reduced the crystallization rate compared with that of neat PBSU at the same crystallization temperature. The crystallization rate decreased with increasing crystallization temperature, while the crystallization mechanism did not change for both neat and blended PBSU irrespective of the crystallization temperature. The spherulitic morphology and growth were observed with hot stage OM in a wide crystallization temperature range of 75-100 °C. The spherulitic morphology of PBSU was influenced apparently by the crystallization temperature and the addition of PVPh. The linear spherulitic growth rate was measured and analyzed by the secondary nucleation theory. Through the Lauritzen-Hoffman equation, some parameters of neat and blended PBSU were derived and compared with each other including the nucleation parameter (Kg), the lateral surface free energy (σ), the end-surface free energy (σe), and the work of chain folding (q). Blending with PVPh decreased all the aforementioned parameters compared with those of neat PBSU; however, the decrease extent was limited. WAXD result showed that the crystal structure of PBSU was not modified after blending with PVPh. SAXS result showed that the long period of blended PBSU increased, possibly indicating that the amorphous PVPh might reside mainly in the interlamellar region of PBSU.  相似文献   

5.
Jong Kwan Lee 《Polymer》2007,48(10):2980-2987
The spherulite morphology and crystallization behavior of poly(trimethylene terephthalate) (PTT)/poly(ether imide) (PEI) blends were investigated with optical microscopy (OM), small-angle light scattering (SALS), and small-angle X-ray scattering (SAXS). Thermal analysis showed that PTT and PEI were miscible in the melt over the entire composition range. The addition of PEI depressed the overall crystallization rate of PTT and affected the texture of spherulites but did not alter the mechanism of crystal growth. When a 50/50 blend was melt-crystallized at 180 °C, the highly birefringent spherulite appeared at the early stage of crystallization (t < 20 min). After longer times, the spherulite of a second form was developed, which exhibited lower birefringence. The SALS results suggested that the observed birefringence change along the radial direction of the spherulite was mainly due to an increase in the orientation fluctuation of the growing crystals as the radius of spherulite increased. The lamellar morphological parameters were evaluated by a one-dimensional correlation function analysis. The amorphous layer thickness showed little dependence on the PEI concentration, indicating that the noncrystallizable PEI component resided primarily in the interfibrillar regions of the growing spherulites.  相似文献   

6.
Jia-Hsien Lin 《Polymer》2006,47(19):6826-6835
Crystalline/crystalline blend systems of poly(ethylene oxide) (PEO) and a homologous series of polyesters, from poly(ethylene adipate) to poly(hexamethylene sebacate), of different CH2/CO ratios (from 3.0 to 7.0) were examined. Correlation between interactions, miscibility, and spherulite growth rate was discussed. Owing to proximity of blend constituents' Tg's, the miscibility in the crystalline/crystalline blends was mainly justified by thermodynamic and kinetic evidence extracted from characterization of the PEO crystals grown from mixtures of PEO and polyesters at melt state. By overcoming experimental difficulty in assessing the phase behavior of two crystalline polymers with closely spaced Tg's, this work has further extended the range of polyesters that can be miscible with PEO. The interaction parameters (χ12) for miscible blends of PEO with polyesters [poly(ethylene adipate), poly(propylene adipate), poly(butylene adipate), and poly(ethylene azelate) with CH2/CO = 3.0-4.5] are all negative but the values vary with the polyester structures, with a maximum for the blend of PEO/poly(propylene adipate) (CH2/CO = 3.5). The values of interactions are apparently dependent on the structures of the polyester constituent in the blends; interaction strength for the miscible PEO/polyester systems correlate in the same trend with the PEO crystal growth rates in the blends.  相似文献   

7.
Miscibility has been investigated in blends of poly(butylene succinate) (PBSU) and poly(vinyl phenol) (PVPh) by differential scanning calorimetry in this work. PBSU is miscible with PVPh as shown by the existence of single composition dependent glass transition temperature over the entire composition range. In addition, the polymer–polymer interaction parameter, obtained from the melting depression of PBSU using the Nishi–Wang equation, is composition dependent, and its value is always negative. This indicates that PBSU/PVPh blends are thermodynamically miscible in the melt. Preliminary morphology study of PBSU/PVPh blends was also studied by optical microscopy (OM). OM experiments show the spherulites of PBSU become larger with the PVPh content, indicative of a decrease in the nucleation density, and the coarseness of PBSU spherulites increases too with increasing the PVPh content in the blends.  相似文献   

8.
Miscibility and crystallization behavior of a polymer blend consisting of two crystalline components, polyoxymethylene copolymer (Co‐POM) and poly(ethylene oxide) (PEO), have been investigated. Experimental results indicate that Co‐POM is thermodynamically miscible with PEO, as shown by the existence of single‐composition dependent glass transition temperature over the entire composition range. The crystal structures and spherulitic morphologies of (Co‐POM)/PEO blends were studied by X‐ray diffraction, differential scanning calorimetry, scanning electron microscopy, and polarizing light microscopy. It was found that the PEO spherulites crystallized within the matrix of the crystals of the pre‐existing Co‐POM phase and resulted in a high extent of interfibrillar segregation. The unique interpenetrated crystalline structure was beneficial for the sufficient contact between the two components and significantly improved both the toughing and the lubricating effect of PEO on the POM matrix. On incorporation of 30 wt% PEO, the notched impact strength of POM was enhanced from 6.7 to 10.3 MPa, by about 53.7%, while the elongation at break increased from 28.5% to 121.0%, by about 3.2 times. Furthermore, the friction coefficient drastically decreased from 0.35 to 0.17, demonstrating the enhanced tribological performance of the miscible blends. J. VINYL ADDIT. TECHNOL., 22:479–486, 2016. © 2015 Society of Plastics Engineers  相似文献   

9.
Zhaobin Qiu  Wantai Yang  Toshio Nishi 《Polymer》2005,46(25):11814-11819
Biodegradable polymer blends of poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) and poly(ε-caprolactone) (PCL) blends were prepared with the ratio of PHBV/PCL ranging from 80/20-20/80 by co-dissolving the two polyesters in chloroform and casting the mixture. Differential scanning calorimetry (DSC) and optical microscopy (OM) were used to investigate the miscibility and crystallization of PHBV/PCL blends. Experimental results indicated that PHBV showed no miscibility with PCL for PHBV/PCL blends as evidenced by the existence of unchanged composition independent glass transition temperature and the biphasic melt. Crystallization of PHBV and PCL was studied with DSC and analyzed by the Avrami equation by using two-step crystallization in the PHBV/PCL blends. The crystallization rate of PHBV at 70 °C decreased with the increase of PCL in the blends, while the crystallization mechanism did not change. In the case of the isothermal crystallization of PCL at 42 °C, the crystallization rate increased with the addition of PHBV, and the crystallization mechanism changed, too, indicating that the crystallization of PHBV at 70 °C had an apparent influence on the crystallization of PCL at 42 °C.  相似文献   

10.
E. Piorkowska  R. Masirek 《Polymer》2006,47(20):7178-7188
Plasticization of semicrystalline poly(l-lactide) (PLA) with a new plasticizer - poly(propylene glycol) (PPG) is described. PLA was plasticized with PPG with nominal Mw of 425 g/mol (PPG4) and 1000 g/mol (PPG1) and crystallized. The plasticization decreased Tg, which was reflected in a lower yield stress and improved elongation at break. The crystallization in the blends was accompanied by a phase separation facilitated by an increase of plasticizer concentration in the amorphous phase and by annealing of blends at crystallization temperature. The ultimate properties of the blends with high plasticizer contents correlated with the acceleration of spherulite growth rate that reflected accumulation of plasticizer in front of growing spherulites causing weakness of interspherulitic boundaries. In PLA/PPG1 blends the phase separation was the most intense leading to the formation of PPG1 droplets, which facilitated plastic deformation of the blends that enabled to achieve the elongation at break of about 90-100% for 10 and 12.5 wt% PPG1 content in spite of relatively high Tg of PLA rich phase of the respective blends, 46.1-47.6 °C. Poly(ethylene glycol) (PEG), long known as a plasticizer for PLA, with nominal Mw of 600 g/mol, was also used to plasticize PLA for comparison.  相似文献   

11.
BACKGROUND: The phase behavior of blends of semicrystalline aryl polyesters with long methylene segments (? (CH2)n? with n = 5 or 7) in the repeat units has not been much studied. Thus, crystalline/crystalline blends comprising monomorphic poly(pentamethylene terephthalate) (PPT) and polymorphic poly(heptamethylene terephthalate) (PHepT) were prepared and the crystal growth kinetics, polymorphism behavior and miscibility in this blend system were probed using polarized‐light optical microscopy, differential scanning calorimetry and wide‐angle X‐ray diffraction. RESULTS: The PPT/PHepT blends of all compositions were first proven to be miscible in the melt state or quenched amorphous phase, whose interaction strength was determined (χ12 = ? 0.35), showing favorable interactions and phase homogeneity. Although the spherulites of neat PPT and PHepT could exhibit ring bands at different crystallization temperature (Tc) ranges (100–110 and 50–65 °C, respectively), the spherulites of PPT/PHepT (50/50) blend became ringless in the range 50–110 °C. Growth analysis and polymorphic behavior in the crystalline phases of the blends provided extra evidence for the miscibility between these two crystalline polymers. Spherulitic growth rates of PPT in the PPT/PHepT blends were significantly reduced in comparison with those of neat PPT. In addition, miscible blending of a small fraction of monomorphic PPT (20 wt%) with polymorphic PHepT altered the crystal stability and led to the originally polymorphic PHepT exhibiting only the β‐crystal form when melt‐crystallized at all values of Tc. CONCLUSION: The highly intimate mixing in polymer chains of crystalline PPT and PHepT causes significant disruption in ring‐band patterns and reduction in crystallization rates of PPT as well as alteration in the polymorphic behavior of PHepT. Copyright © 2009 Society of Chemical Industry  相似文献   

12.
Shin-ichi Hirota 《Polymer》2006,47(11):3954-3960
The purpose of this study is to investigate the effect of carbon dioxide (CO2) on the crystallization behavior and the mechanical properties of PLLA/PMMA blends with various weight fraction of PMMA. PLLA/PMMA blends can be crystallized even at a low temperature of 0 °C under high-pressure CO2. The films treated with high-pressure CO2 at 0 °C have about three times larger strain at break than that of the amorphous and cold-crystallized film. The size of spherulites in the CO2 treated film is considered to be smaller than the wavelength of the visible light because of a good transparency. The improvement of the strain at break is attributed to the reduction of the stress concentration during the deformation.  相似文献   

13.
The morphology of a melt-quenched crystalline-crystalline diblock copolymer, poly(ε-caprolactone)-block-polyethylene (PCL-b-PE), was studied by small-angle X-ray scattering and transmission electron microscopy. The melting behavior of PCL-b-PE was also investigated by differential scanning calorimetry. The melting temperature of PCL blocks, Tm,PCL, was ca. 55 °C and that of PE blocks was ca. 96 °C. Therefore, the PE block always crystallized first during quenching from the microphase-separated melt into various temperatures Tc below Tm,PCL to yield an alternating structure composed of PE lamellae and amorphous layers (PE lamellar morphology), and subsequently the crystallization of PCL blocks started at Tc after some induction period. The PE lamellar morphology was preserved after the crystallization of PCL blocks at low crystallization temperatures (Tc<30 °C), that is, the PCL block crystallized within the PE lamellar morphology. At high crystallization temperatures (45 °C>Tc>30 °C), on the other hand, the crystallization of PCL blocks destroyed the PE lamellar morphology to result in a new lamellar morphology mainly consisting of PCL lamellae and amorphous layers (PCL lamellar morphology). The PE crystals were fragmentarily dispersed in the PCL lamellar morphology.  相似文献   

14.
The effects of incorporated poly(d-lactic acid) (PDLA) as poly(lactic acid) (PLA) stereocomplex crystallites on the isothermal and non-isothermal crystallization behavior of poly(l-lactic acid) (PLLA) from the melt were investigated for a wide PDLA contents from 0.1 to 10 wt%. In isothermal crystallization from the melt, the radius growth rate of PLLA spherulites (crystallization temperature (Tc)≥125 °C), the induction period for PLLA spherulite formation (ti) (Tc≥125 °C), the growth mechanism of PLLA crystallites (90 °C≤Tc≤150 °C), and the mechanical properties of the PLLA films were not affected by the incorporation of PDLA or the presence of stereocomplex crystallites as a nucleating agent. In contrast, the presence of stereocomplex crystallites significantly increased the number of PLLA spherulites per unit area or volume. In isothermal crystallization from the melt, at PDLA content of 10 wt%, the starting, half, and ending times for overall PLLA crystallization (tc(S), tc(1/2), and tc(E), respectively) were much shorter than those at PDLA content of 0 wt%, due to the increased number of PLLA spherulites. Reversely, at PDLA content of 0.1 wt%, the tc(S), tc(1/2), and tc(E) were longer than or similar to those at PDLA content of 0 wt%, probably due to the long ti and the decreased number of spherulites. This seems to have been caused by free PDLA chains, which did not form stereocomplex crystallites. On the other hand, at PDLA contents of 0.3-3 wt%, the tc(S), tc(1/2), and tc(E) were shorter than or similar to those at PDLA content of 0 wt% for the Tc range below 95 °C and above 125 °C, whereas this inclination was reversed for the Tc range of 100-120 °C. In the non-isothermal crystallization of as-cast or amorphous-made PLLA films during cooling from the melt, the addition of PDLA above 1 wt% was effective to accelerate overall PLLA crystallization. The X-ray diffractometry could trace the formation of stereocomplex crystallites in the melt-quenched PLLA films at PDLA contents above 1 wt%. This study revealed that the addition of small amounts of PDLA is effective to accelerate overall PLLA crystallization when the PDLA content and crystallization conditions are scrupulously selected.  相似文献   

15.
Poly(vinylidene fluoride) (PVDF) and poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV), both semicrystalline polymers, are miscible as shown by the single glass transition temperature over the entire composition range. Morphology of PVDF/PHBV blends was investigated by optical microscopy under two different crystallization conditions. PVDF showed the spherulitic morphology at 150 °C in the PVDF/PHBV blends, where PHBV acted as the noncrystallizing component. PHBV also showed the spherulitic morphology within the matrix of the pre-existing PVDF crystals when PVDF/PHBV blends were quenched from the melt to the crystallization temperature below the melting point of PHBV. The spherulitic growth of PHBV was investigated as the function of both blend composition and crystallization temperature.  相似文献   

16.
Blends of poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) and poly(butylene succinate) (PBSU), both biodegradable semicrystalline polyesters, were prepared with the ratio of PHBV/PBSU ranging from 80/20 to 20/80 by co-dissolving the two polyesters in chloroform and casting the mixture. Differential scanning calorimetry (DSC) and optical microscopy (OM) were used to study the miscibility and crystallization behaviour of PHBV/PBSU blends. Experimental results indicate that PHBV is immiscible with PBSU as shown by the almost unchanged glass transition temperature and the biphasic melt. Crystallization of PHBV/PBSU blends was studied by DSC using two-step crystallization and analyzed by the Avrami equation. The crystallization rate of PHBV decreases with the increase of PBSU in the blends while the crystallization mechanism does not change. In the case of the isothermal crystallization of PBSU, the crystallization mechanism does not change. The crystallization rate of PBSU in the blends is lower than that of neat PBSU; however, the change in the crystallization rate of PBSU was not so big in the blends. The different content of the PHBV in the blends does not make a significant difference in the crystallization rate of PBSU.  相似文献   

17.
Blending poly(ethylene glycol) (PEG) with poly(lactide) (PLA) decreases the Tg and improves the mechanical properties. The blends have lower modulus and increased fracture strain compared to PLA. However, the blends become increasingly rigid over time at ambient conditions. Previously, it was demonstrated that a PLA of lower stereoregularity was miscible with up to 30 wt% PEG. Aging was due to slow crystallization of PEG from the homogeneous amorphous blend. Crystallization of PEG depleted the amorphous phase of PEG and gradually increased the Tg until aging essentially ceased when Tg of the amorphous phase reached the aging temperature. In the present study, this aging mechanism was tested with a crystallizable PLA of higher stereoregularity. Changes in thermal transitions, solid state structure, and mechanical properties were examined over time. Blends with up to 20 wt% PEG were miscible. Blends with 30 wt% PEG could be quenched from the melt to the homogenous amorphous glass. However, this composition phase separated at ambient temperature with little or no crystallization. Changes in mechanical properties during phase separation reflected increasing rigidity of the continuous PLA-rich phase as it became richer in PLA. Construction of a phase diagram for blends of higher stereoregular PLA with PEG was attempted.  相似文献   

18.
Ling Chang 《Polymer》2011,52(1):68-76
Effects of poly(3-hydroxybutyrate) (PHB) on crystalline morphology of stereocomplexing capacity of poly(L- and D-lactic acid) (PLLA and PDLA) were studied by differential scanning calorimetry (DSC), polarizing-light optical microscopy (POM), atomic-force microscopy (AFM) and wide-angle X-ray diffraction (WAXD). When crystallized at high Tc (130 °C or above), morphology transition of stereocomplexed PLA (sc-PLA) occurs from original well-rounded Maltese-cross spherulites to dendritic form in blends of high PHB contents (50 wt.% or higher), where PHB acts as an amorphous species. Microscopy characterizations show that morphology of sc-PLA in PHB/sc-PLA blends crystallized at Tc = 170 °C no longer retain original complexed Maltese-cross well-rounded spherulites; instead, the spherulites are disintegrated and restructured into two types of dendrites: (1) edge-on feather-like dendrites (early growth) and (2) flat-on wedge-like crystal plates (later growth) by growing along different directions and exhibiting different optical brightness. The concentration and/or distribution of amorphous PHB at the crystal growth front, corresponding to variation of the slopes of spherulitic growth rates, is a factor resulting in alteration and restructuring of the sc-PLA spherulites in the blends. Despite of spherulite disintegration, WAXD result shows that these two PHB-induced dendrites still retain the original unit cells of complexes, and thus these two new dendrites are sc-PLA.  相似文献   

19.
The miscibility and crystallization kinetics of the blends of poly(trimethylene terephthalate) (PTT) and amorphous poly(ethylene terephthalate) (aPET) have been investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was found that PTT/aPET blends were miscible in the melt. Thus, the single glass transition temperature (Tg) of the blends within the whole composition range and the retardation of crystallization kinetics of PTT in blends suggested that PTT and aPET were totally miscible. The nucleation density of PTT spherulites, the spherulitic growth, and overall crystallization rates were depressed upon blending with aPET. The depression in nucleation density of PTT spherulites could be attributed to the equilibrium melting point depression, while the depression in the spherulitic growth and overall crystallization rates could be mainly attributed to the reduction of PTT chain mobility and dilution of PTT upon mixing with aPET. The underlying nucleation mechanism and growth geometry of PTT crystals were not affected by blending, from the results of Avrami analysis. POLYM. ENG. SCI., 47:2005–2011, 2007. © 2007 Society of Plastics Engineers  相似文献   

20.
《Polymer》2003,44(2):451-455
The microhardness of poly(ethylene naphthalene-2,6-dicarboxylate) (PEN), with a detailed characterized nanostructure has been investigated. PEN samples were crystallized from the glassy state at atmospheric pressure and from the melt at high pressure and were characterized using small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC). Results show that the degree of crystallinity derived from WAXS, for both atmospheric and high-pressure crystallized PEN, is smaller than that obtained by density and calorimetry. For high-pressure crystallized samples, both, crystallinity and microhardness values are larger than those found for the material crystallized under atmospheric pressure. In the latter case, the hardness values depend on the volume fraction of lamellar stacks within spherulites XL that depends on the crystallization temperature Tc. For Tc<200 °C, XL is found to be less than 50%. Thus, for Tc<200 °C a linear relationship between H and Tc is observed provided a sufficiently long crystallization time is used. Results are discussed in terms of the rigid amorphous fraction that appears as a consequence of the molecular mobility restrictions due to the crystal stacks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号