首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Blends of poly(ethylene oxide) (PEO) and poly(4-vinylphenol-co-2-hydroxyethyl methacrylate) (PVPh-HEM) were studied by means of synchrotron small and wide angle X-ray scattering (SAXS and WAXS, respectively) and by differential scanning calorimetry (DSC). The DSC measurements were used in the determination of the Flory–Huggins interaction parameter and also to study the isothermal and non-isothermal crystallisation kinetics of the PEO/PVPh-HEM blend. The interaction parameter, χ12, was found to be negative (between −0.5 and −2.5, approximately) and presented a significant dependence on the blend composition, which is expected for a system with specific interactions such as hydrogen bonding. From the kinetic studies with Kissinger, Friedman and Avrami models, it was shown that crystallisation of PEO chains is slower in the blend than in the pure polymer, despite the decrease in the energy barrier to the crystallisation with the increase in PVPh-HEM concentration.

From the SAXS and WAXS profiles, the nanostructure of the blend was elucidated, exhibiting the formation of PEO lamellae even in the blends containing high concentrations of PVPh-HEM, which are non-crystalline (as observed by the WAXS profiles). The thickness of the PEO lamellae (Rc, approximately 8 nm) remains almost unchanged with the blend composition, while the crystalline peaks, observed at 19.78 and 23.98°, vanish, and the WAXS profile exhibits only a non-crystalline halo. For the non-crystalline blends with high concentrations of PVPh-HEM, PEO chains keep their crystalline structural memory.  相似文献   


2.
Han LüSixun Zheng 《Polymer》2003,44(16):4689-4698
Thermosetting polymer blends composed of polybenzoxazine (PBA-a) and poly(ethylene oxide) (PEO) were prepared via in situ curing reaction of benzoxazine (BA-a) in the presence of PEO, which started from the initially homogeneous mixtures of BA-a and PEO. Before curing, the BA-a/PEO blends displayed the single and composition-dependant glass transition temperatures (Tg's) in the entire blend composition, and the equilibrium melting point depression was also observed in the blends. It is judged that the BA-a/PEO blends are completely miscible. The miscibility was mainly ascribed to the contribution of entropy to mixing free energy since the molecular weight of BA-a is rather low. However, phase separation occurred after curing reaction at the elevated temperature, which was confirmed by differential scanning calorimetry (DSC) and scanning electronic microscopy (SEM). It was expected that the PBA-a/PEO blends would be miscible since PBA-a possesses a great number of phenolic hydroxyls in the molecular backbone, which are potential to form the intermolecular hydrogen bonding interactions with oxygen atoms of PEO and thus would fulfill the miscibility of the blends. To interpret the experimental results, we investigated the variable temperature Fourier transform infrared spectroscopy (FTIR) of the blends via model compound. The FTIR results indicate that the phenolic hydroxyl groups could not form the efficient intermolecular hydrogen bonding interactions at the elevated temperatures (e.g. the curing temperatures), i.e. the phenolic hydroxyl groups existed mainly in the non-associated form in the system. Therefore, the decrease of the mixing entropy still dominates the phase behavior of thermosetting blends at the elevated temperature.  相似文献   

3.
Han Lü  Guohua Tian 《Polymer》2004,45(9):2897-2909
Poly(hydroxyether sulfone) (PHES) was synthesized through polycondensation of bisphenol S with epichlorohydrin. It was characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy and differential scanning calorimetry (DSC). The miscibility in the blends of PHES with poly(ethylene oxide) (PEO) was established on the basis of the thermal analysis results. DSC showed that the PHES/PEO blends prepared by casting from N,N-dimethylformamide (DMF) possessed single, composition-dependent glass transition temperatures (Tgs), indicating that the blends are miscible in amorphous state. At elevated temperatures, the PHES/PEO blends underwent phase separation. The phase behavior was investigated by optical microscope and the cloud point curve was determined. A typical lower critical solution temperature behavior was observed in the moderate temperature range for this blend system. FTIR studies indicate that there are the competitive hydrogen bonding interactions upon adding PEO to the system, which was involved with the intramolecular and intermolecular hydrogen bonding interactions, i.e. -OH?OS, -OH?-OH and -OH versus ether oxygen atoms of PEO between PHES and PEO. In terms of the infrared spectroscopic investigation, it is judged that from weak to strong the strength of the hydrogen bonding interactions is in the following order: -OH?OS, -OH?-OH and -OH versus ether oxygen atoms of PEO.  相似文献   

4.
Blends of poly(ethylene oxide) (PEO) with softwood kraft lignin (SKL) were prepared by thermal blending. The miscibility behavior and hydrogen bonding of the blends were investigated by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The experimental results indicate that PEO was miscible with SKL, as shown by the existence of a single glass‐transition temperature over the entire composition range by DSC. In addition, a negative polymer–polymer interaction energy density was calculated on the basis of the melting point depression of PEO. The formation of strong intermolecular hydrogen bonding was detected by FTIR analysis. A comparison of the results obtained for the SKL/PEO blend system with those previously observed for a hardwood kraft lignin/PEO system revealed the existence of stronger hydrogen bonding within the SKL/PEO blends but weaker overall intermolecular interactions between components; this suggested that more than just hydrogen bonding was involved in the determination of the blend behavior in the kraft lignin/PEO blends. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1437–1444, 2005  相似文献   

5.
Ternary blends of poly(ethylene oxide) (PEO), poly(bisphenol A-co-epichlorohydrin) (PBE) and poly(vinyl ethyl ether) (PVEE) were obtained as films and characterized by differential scanning calorimetry (DSC) and vibrational spectroscopy (FTIR). From the DSC results, phase diagrams for the ternary blends were determined, where the variation of the viscoelastic phase extent as a function of the polymers composition was determined. The DSC results also indicated miscibility of the system, exhibiting only one glass transition temperature (Tg) and decrease in the crystallinity of the system, as well as decrease in the crystallinity of PEO present in the blends. Vibrational spectroscopy (FTIR) provided information on the intermolecular interactions between the pairs PBE/PEO and PBE/PVEE, via hydrogen bond interaction. From the FTIR analyses, molecular model systems of equilibrium among the interacting structures were proposed as a molecular basis for the miscibility of the system.Polymer electrolytes based on the ternary blend containing 60/25/15 (PEO/PBE/PVEE) mass percent and lithium perchlorate (LiClO4) were obtained and characterized by DSC, FTIR, optical microscopy and electrochemical impedance spectroscopy (EIS). Solid electrolytes containing up to 10 wt% LiClO4 exhibited a single-phase behavior, evidenced by the DSC results. For these electrolytes, FTIR spectra indicated the formation of polymer-ion complexes, in which the cation (Li+) acts favoring the polymer-polymer miscibility. Electrolytes containing LiClO4 higher than 10 wt% exhibit a multiple phase behavior, in which a PEO-rich, salt-containing phase is present in equilibrium with PBE or PVEE-rich phases. Maximum ionic conductivity at room temperature, for the electrolyte containing 20 wt% LiClO4, reached 4.23 × 10−3 Ω−1 cm−1, while all samples exhibited conductivity of approximately 10−1 Ω−1 cm−1 at 80 °C.  相似文献   

6.
The miscibility and crystallization behavior of poly(ethylene oxide)/poly(vinyl alcohol) (PEO/PVA) blends were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and polarizing optical microscopy. Because the glass‐transition temperature of PVA was near the melting point of PEO crystalline, an uncommon DSC procedure was used to determine the glass‐transition temperature of the PVA‐rich phase. From the DSC and DMA results, two glass‐transition temperatures, which corresponded to the PEO‐rich phase and the PVA‐rich phase, were observed. It was an important criterion to indicate that a blend was immiscible. It was also found that the preparation method of samples influenced the morphology and crystallization behaviors of PEO/PVA blends. The domain size of the disperse phase (PVA‐rich) for the solution‐cast blends was much larger than that for the coprecipitated blends. The crystallinity, spherulitic morphology, and isothermal crystallization behavior of PEO in the solution‐cast blends were similar to those of the neat PEO. On the contrary, these properties in the coprecipitated blends were different from those of the neat PEO. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1562–1568, 2004  相似文献   

7.
Jia-Hsien Lin 《Polymer》2006,47(19):6826-6835
Crystalline/crystalline blend systems of poly(ethylene oxide) (PEO) and a homologous series of polyesters, from poly(ethylene adipate) to poly(hexamethylene sebacate), of different CH2/CO ratios (from 3.0 to 7.0) were examined. Correlation between interactions, miscibility, and spherulite growth rate was discussed. Owing to proximity of blend constituents' Tg's, the miscibility in the crystalline/crystalline blends was mainly justified by thermodynamic and kinetic evidence extracted from characterization of the PEO crystals grown from mixtures of PEO and polyesters at melt state. By overcoming experimental difficulty in assessing the phase behavior of two crystalline polymers with closely spaced Tg's, this work has further extended the range of polyesters that can be miscible with PEO. The interaction parameters (χ12) for miscible blends of PEO with polyesters [poly(ethylene adipate), poly(propylene adipate), poly(butylene adipate), and poly(ethylene azelate) with CH2/CO = 3.0-4.5] are all negative but the values vary with the polyester structures, with a maximum for the blend of PEO/poly(propylene adipate) (CH2/CO = 3.5). The values of interactions are apparently dependent on the structures of the polyester constituent in the blends; interaction strength for the miscible PEO/polyester systems correlate in the same trend with the PEO crystal growth rates in the blends.  相似文献   

8.
The miscibility of high molecular weight poly( -lactide) PLLA with high molecular weight poly(ethylene oxide) PEO was studied by differential scanning calorimetry. All blends containing up to 50 weight% PEO showed single glass transition temperatures. The PLLA and PEO melting temperatures were found to decrease on blending, the equilibrium melting points of PLLA in these blends decreased with increasing PEO fractions. These results suggest the miscibility of PLLA and PEO in the amorphous phase. Mechanical properties of blends with up to 20 weight% PEO were also studied. Changes in mechanical properties were small in blends with less than 10 weight% PEO. At higher PEO concentrations the materials became very flexible, an elongation at break of more than 500% was observed for a blend with 20 weight% PEO. Hydrolytic degradation up to 30 days of the blends showed only a small variation in tensile strength at PEO concentrations less than 15 weight%. As a result of the increased hydrophilicity, however, the blends swelled. Mass loss upon degradation was attributed to partial dissolution of the PEO fraction and to an increased rate of degradation of the PLLA fraction. Significant differences in degradation behaviour between PLLA/PEO blends and (PLLA/PEO/PLLA) triblock-copolymers were observed.  相似文献   

9.
The miscibility and crystallization behavior of poly(ethylene oxide) (PEO) and poly(styrene‐co‐maleic anhydride) ionomer (SMAI) blends were studied by the dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). This study has demonstrated that the presence of ion–dipole interactions enhances the miscibility of otherwise immiscible polymers in the PEO and high molecular weight poly(styrene‐co‐maleic anhydride) (SMA). The effect of ion–dipole interactions on enhancing miscibility is confirmed by the presence of a single glass transition temperature (Tg) and a depression of the equilibrium melting temperature of the PEO component. The equilibrium melting temperature of PEO in the blends are obtained using Hoffman‐Weeks plots. The interaction energy density, β, is calculated from these data using the Nishi‐Wang equation. The results suggest that PEO and SMAI blends are thermodynamically miscible in the melt. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1–7, 2000  相似文献   

10.
Poly(ethylene oxide)/poly(ε-caprolactone) (PEO/PCL) blends can be widely used in lithium rechargeable battery area or as medical materials, while the miscibility and phase diagram of the blends are still unclear. The present work attempted to establish the blends’ phase diagram using rheometry and investigated the miscibility. The results showed that a miscibility window of upper critical solution temperature character of the blends is revealed. Meanwhile, the abnormal rheological behavior of PEO at temperatures higher than 130 °C has little influence on the phase diagram determination. Different rheological properties of PEO/PCL blends from those of PEO revealed the existence of interactions between PEO and PCL molecular chains. Whereas shear-induced mixing or shear-induced phase separation might occur in phase diagram determination of PEO/PCL blends using rheometry.  相似文献   

11.
The miscibility of high molecular weight poly(l-lactide) PLLA with high molecular weight poly(ethylene oxide) PEO was studied by differential scanning calorimetry. All blends containing up to 50 weight% PEO showed single glass transition temperatures. The PLLA and PEO melting temperatures were found to decrease on blending, the equilibrium melting points of PLLA in these blends decreased with increasing PEO fractions. These results suggest the miscibility of PLLA and PEO in the amorphous phase. Mechanical properties of blends with up to 20 weight% PEO were also studied. Changes in mechanical properties were small in blends with less than 10 weight% PEO. At higher PEO concentrations the materials became very flexible, an elongation at break of more than 500% was observed for a blend with 20 weight% PEO. Hydrolytic degradation up to 30 days of the blends showed only a small variation in tensile strength at PEO concentrations less than 15 weight%. As a result of the increased hydrophilicity, however, the blends swelled. Mass loss upon degradation was attributed to partial dissolution of the PEO fraction and to an increased rate of degradation of the PLLA fraction. Significant differences in degradation behaviour between PLLA/PEO blends and (PLLA/PEO/PLLA) triblock-copolymers were observed.  相似文献   

12.
Blends composed of diaminodiphenylmethane bisphenol‐A epoxy resin and poly(ethylene oxide) (PEO) were prepared via in situ curing reaction of epoxy in the presence of PEO. The miscibility of the blends before and after curing was established by thermal (differential scanning calorimetry, DSC), microstructural (atomic force microscopy) and dynamic mechanical analysis. Fourier transform infrared spectroscopy indicated that the OH groups developed through cure reactions interact by hydrogen bonding with PEO. After crystallinity analysis by DSC, the interaction parameter was determined through the depression of the equilibrium melting temperature. Mechanical properties of the miscible blends do not show any significant change, although improvement of fracture toughness has been observed with respect to the matrix properties. Copyright © 2006 Society of Chemical Industry  相似文献   

13.
Yong Ni 《Polymer》2005,46(15):5828-5839
Two aromatic amines were used as the curing agents to prepare the thermosetting blends of epoxy and poly(ε-caprolactone) (PCL). When cured with 4,4′-methylenebis(2-chloroaniline) (MOCA), the thermosetting blends are miscible in the amorphous state in the entire composition, which was evidenced by the behavior of single, and composition-dependent glass transition temperatures (Tg's) in terms of thermal analysis. Fourier transform infrared spectroscopy (FTIR) showed that there are the intermolecular specific interactions (viz. hydrogen bonding) between the component polymers. However, the 4,4′-diaminodiphenylsulfone (DDS)-cured epoxy forms the immiscible blends with PCL. The blends displayed a typical reaction-induced phase separation morphology. The phase behavior seems to be more than the expected since it was ever proposed that there would be the intermolecular specific interactions between amine-cured epoxy and PCL, which would fulfill the miscibility of the systems. To interpret the phase behavior, we investigated that the miscibility and intermolecular specific interactions in the blends of model compounds and linear homologues of epoxy with PCL. It was observed that in MOCA-cured blends there were much stronger intermolecular specific interactions than in DDS-cured counterparts. The weaker intermolecular specific interactions between DDS-cured epoxy and PCL resulted from the formation of the intramolecular hydrogen bonding interactions within DDS-crosslinked epoxy, which were involved with the sulfonyl groups and the secondary hydroxyls. The intramolecular association could suppress the formation of the strong intermolecular hydrogen bonding interactions between carbonyls and hydroxyls of amine-cured epoxy, which are sufficient to fulfill the homogenization of the system during the in situ polymerization. Therefore, the presence of the intramolecular specific interactions between sulfonyl and hydroxyl groups was taken as the origin of phase-separated morphology for DDS-cured blends of epoxy with PCL.  相似文献   

14.
Poly(ethylene oxide) (PEO)/poly(vinyl pyrrolidone) (PVP) blends containing different amounts of PVP (0, 10, 25, 50, and 100 wt %) prepared by a solution casting method were characterized in terms of microstructure, thermal, and mechanical properties along with their drug release behavior. Fourier‐transform infrared spectroscopy results confirmed formation of hydrogen bonds between PEO and PVP. Although scanning electron microscopy micrographs showed no phase separation in the blends, the elemental analysis data obtained by energy dispersive X‐ray technique revealed partial miscibility between the blend components. The miscibility of the blend and degree of crystallinity of PEO component of the blend were decreased with increasing PVP content of the blend. The nucleating role of PVP in crystallization of PEO was confirmed by differential scanning calorimetry analysis. A synergistic effect on mechanical properties was obtained as a result of blending PVP with PEO. The results of curcumin release studies from the films indicated that, the blends have lower diffusion coefficients and slower drug release rate as compared to the neat PEO. Theoretical analysis of the drug release data using Peppas's model revealed that the kinetic of drug release from all the films is governed by a non‐Fickian diffusion mechanism. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46403.  相似文献   

15.
The miscibility of poly(hydroxyether of bisphenol A) (phenoxy) with a series of poly(ethylene oxide-co-propylene oxide) (EPO) has been studied. It was found that the critical copolymer composition for achieving miscibility with phenoxy around 60°C is about 22 mol % ethylene oxide (EO). Some blends undergo phase separation at elevated temperatures, but there is no maximum in the miscibility window. The mean-field approach has been used to describe this homopolymer/copolymer system. From the miscibility maps and the melting-point depression of the crystallizable component in the blends, the binary interaction energy densities, Bij, have been calculated for all three pairs. The miscibility of phenoxy with EPO is considered to be caused mainly by the intermolecular hydrogen-bonding interactions between the hydroxyl groups of phenoxy and the ether oxygens of the EO units in the copolymers, while the intramolecular repulsion between EO and propylene oxide units in the copolymers contributes relatively little to the miscibility. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
《Polymer》1987,28(7):1190-1199
The influence of different configurations of poly(methyl methacrylate) on the miscibility and superstructure of poly(ethylene oxide)/poly(methyl methacrylate) (PEO/PMMA) blends was examined using small-angle X-ray scattering and differential scanning calorimetry. The blends prepared by solution casting were isothermally crystallized at 48°C. The miscibility, the melting behaviour, the glass transition temperature and the structural parameters of the blends were strongly dependent on the tacticity and blend composition. The small-angle X-ray intensity profiles were analysed using a recently developed methodology. For the poly(ethylene oxide)/atactic poly(methyl methacrylate) (PEO/APMMA) and poly(ethylene oxide)/syndiotactic poly(methyl methacrylate) (PEO/SPMMA) blends, the long period and the amorphous and transition region thicknesses increased with increase of PMMA content, whereas for the poly(ethylene oxide)/isotactic poly(methyl methacrylate) (PEO/IPMMA) blends they are independent of composition. The structural properties of the blends were attributed to the presence of non-crystallizable material in the interlamellar or interfibrillar regions, depending on PMMA tacticity. From the glass transition and melting temperatures, it has been supposed that one homogeneous amorphous phase is present in the case of PEO/APMMA and PEO/SPMMA blends and that the PEO/IPMMA amorphous system is phase-separated. The free-volume contribution to the energy of mixing for the various tactic PMMAs is hypothesized to be responsible for the difference in mixing behaviour.  相似文献   

17.
Blends of poly(ethylene oxide) (PEO) with poly(ε-caprolactone) (PCL), both semicrystalline polymers, were prepared by co-dissolving the two polyesters in chloroform and casting the mixture. Phase contrast microscopy was used to probe the miscibility of PEOB/PCL blends. Experimental results indicated that PEO was immiscible with PCL because the melt was biphasic. Crystallization of PEO/PCL blends was studied by differential scanning calorimetry and analyzed by the Avrami equation. The crystallization rate of PEO decreased with the increase of PCL in the blends while the crystallization mechanism did not change. In the case of the isothermal crystallization of PCL, the crystallization mechanism did not change, and the change in the crystallization rate was not very big, or almost constant with the addition of PEO, compared with the change of the crystallization rate of PEO.  相似文献   

18.
The compatibilizing effect of poly(styrene-graft-ethylene oxide) in polystyrene (PS) blends with poly(n-butyl acrylate) (PBA) and poly(n-butyl acrylate-co-acrylic acid) (PBAAA) was investigated. No significant effects of the graft copolymer on the domain size were found in the PBA blends. By functionalizing PBA with acrylic acid, the average size of the polyacrylate domains was reduced considerably by the graft copolymer. Thermal and dynamic mechanical analysis of the PS/PBAAA blends revealed that the PBAAA glass transition temperature (Tg) decreased with increasing graft copolymer content. The effect of the graft copolymer in the PS/PBAAA blends can be explained by interactions across the interface due to the formation of hydrogen bonds between the poly(ethylene oxide) (PEO) side chains in the graft copolymer and the acrylic acid segments in the PBAAA phase. Hydrogen bonding was confirmed by IR analysis of binary blends of PEO and PBAAA. Partial miscibility in the PEO/PBAAA blends was indicated by a PEO melting point depression and by a Tg reduction of the PBAAA phase. The thermal properties of the PEO/PBA blends indicated only very limited miscibility. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
Summary Differential scanning calorimeter (DSC), optical microscopy (OM) and scanning electron microscopy (SEM) were performed to characterize the miscibility of a blend system comprising poly (butylene naphthalate) (PBN) and poly (ether imide) (PEI). DSC scans showed there was only one single Tg for each blend and the glass transitions increase monotonously with the increase of PEI content. The glass transition temperatures of the blends fitted the Fox equation well implying that the blends exhibited fine segmental scale of mixing. No lower critical solution temperature (LCST) was observed by OM for the blends. SEM micrographs showed the fracture surface of quenched sample exhibited a homogeneous structure. No obvious IR peak shift of C=O absorption at 1780 cm−1 was observed suggesting a relatively low level of specific interaction between two molecules. It was concluded that these blends were miscible with non-specific intermolecular interactions. Received: 5 January 2001/Accepted: 27 February 2001  相似文献   

20.
Jiangfeng Mu 《Polymer》2007,48(5):1176-1184
A novel organic-inorganic interpenetrating polymer network (IPN) was prepared via in situ crosslinking between octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane (OpePOSS) and 2,2-bis(4-hydroxyphenyl)propane in the presence of poly(ethylene oxide) (PEO). The miscibility and intermolecular specific interactions of the IPNs were investigated by means of differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. In view of the results of calorimetric analysis and morphological observation, it is judged that the components of the organic-inorganic IPNs are fully miscible. The FTIR spectroscopy shows that there are inter-component hydrogen bonding interactions between the POSS network and PEO. The measurements of static contact angle show that the hydrophilicity (and/or the surface free energy) of the organic-inorganic IPNs increased with the addition of the miscible and water-soluble polymer (i.e., PEO). Thermogravimetric analysis (TGA) shows that the thermal stability of the IPNs was quite dependent on the mass ratios of the POSS network to PEO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号