首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of iron oxide doped norbornene (NOR)/deuterated norbornene dicarboxylic acid (NORCOOH) diblock copolymers were synthesized and characterized by X-ray photoelectron spectroscopy (XPS), small angle neutron scattering (SANS) and superconducting quantum interference device (SQUID) experiments. γ-Fe2O3 nanoparticles were synthesized within the microdomains of diblock copolymers with volume fractions of NOR/NORCOOH 0.64/0.36, 0.50/0.50 and 0.40/0.60. A spherical nanoparticle morphology was displayed in the polymer with 0.64/0.36 volume fraction. Polymers with 0.50/0.50 and 0.40/0.60 volume fractions exhibited interconnected metal oxide nanostructures. The observed changes in the shape and peak positions of the small-angle neutron scattering profiles of polymers after metal doping were related to the scattering from the metal oxide particles and to the possible deformed morphologies due to the strong interparticle interactions between metal particles, which may influence the polymer microphase separation. The combined scattering from both polymer domains and magnetic particles was depicted in SANS profiles of metal oxide doped polymers. γ-Fe2O3 containing block copolymers were superparamagnetic at room temperature. An increase in the blocking temperature (Tb) of interconnected nanoparticles was observed and was related to the interparticle interactions, which depends on the average distance (d) between particles and individual particle diameter (2R). The sample with volume fraction of 0.4/0.6 have the lowest d/(2R) ratio and exhibit the highest Tb at 115 K.  相似文献   

2.
The development of self‐assembled ZnO nanoparticles within a diblock copolymer matrix using wet chemical processing specific to ZnO is reported. Diblock copolymers consisting of polynorbornene and poly(norbornene–dicarboxcylic acid) (NOR/NORCOOH) were synthesized with a block repeat unit ratio of 400 for the first block and 50 for the second block, to obtain spherical microphase separation. The block copolymer self‐assembly was used to template the growth of ZnO nanoparticles by introducing a ZnCl2 precursor into the second polymer (NORCOOH) block at room temperature and processing the copolymer by wet chemical methods to substitute the chlorine atoms with oxygen. X‐ray photoemission spectroscopy (XPS) verified the conversion of ZnCl2 to ZnO by monitoring the disappearance of the Cl 1s peak and the shift in the binding energy of the Zn 2p3 peak in the high‐resolution spectra. The substitution of Cl by O was found to be a highly preferential process, whereby only one approach using a weak base (NH4OH) succeeded in effectively replacing Cl with O to result in spherical ZnO nanoparticles having a size ranging from 7 to 15 nm, as determined by transmission electron microscopy. The development of such block copolymer‐templated ZnO nanoparticles% is important in enabling the functionalization of large‐area nanodevice technologies. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1058–1061, 2003  相似文献   

3.
Ring-opening metathesis copolymerization of norbornene ethyl polyhedral oligomeric silsesquioxane monomer (NBEPOSS) and 2-endo-3-exo-5-norbornene-2,3-dicaboxylic acid trimethyl ester (NBETMS) was performed using a Ru-based catalyst, RuCl2(CHPh)(PCy3)2. The block copolymers poly(NBETMS-b-NBEPOSS) were then converted to poly(NBECOOH-b-NBEPOSS) by hydrolysis and precipitation. The polymers were characterized by NMR and GPC and the actual NBEPOSS contents were found in good correspondence with the theoretical values. A linear dependence of Mn on conversion and a linear dependence of ln([M0]/[M]) on reaction time observed in the polymerization of NBETMS suggest that chain breaking reactions such as termination and chain transfer are minimal. Low PDI values and smooth GPC peak shifts during polymerization after addition of a second batch of the same monomer or a NBEPOSS monomer also reflect a living process.  相似文献   

4.
The crystallization behavior of poly(oxyethylene)-b-poly(oxybutylene) block copolymers with different compositions, morphologies and architectures (EmBn diblock copolymers and EmBnEm, BnEmBn triblock copolymers) were investigated and the effect of volume fraction and architecture on the crystallization temperature (Tc) in non-isothermal crystallization was determined. It is found that the EmBn diblock copolymers having long E blocks exhibit similar crystallization temperatures, irrespective of volume fraction and morphology, but for the block copolymers with shorter E blocks the crystallization temperature increases with both the volume fraction, φE, and the length, m, of the E block. Some block copolymers with extremely low Tc, which fall into the temperature range normally associated with homogenous nucleation, were chosen for time-resolved small-angle X-ray scattering (SAXS) and isothermal crystallization kinetics experiments. The results show that breakout crystallization occurs in all these block copolymers. Therefore, unlike EmBn/Bh blends, there is no obvious relationship between Tc and crystallization behavior in neat block copolymers and homogeneous nucleation does not definitely lead to confined crystallization. The values of χc/χODT for all the block copolymers with hex and bcc morphology were also calculated. It is found that all the block copolymers have χc/χODT<3, in agreement with the previously reported critical value and consistent with their breakout crystallization behavior.  相似文献   

5.
Dongrui Wang 《Polymer》2009,50(2):418-508
In this work, a series of amphiphilic diblock copolymers bearing strong push-pull type azo chromophores was synthesized through post-polymerization azo-coupling reaction scheme. The copolymers (P(CNAZOm-b-MAAn)), composed of 2-(N-ethyl-N-(4-(4′-cyanophenylazo)-phenyl)amino)ethyl methacrylate (CNAZO) and methacrylic acid (MAA) blocks, were obtained through four-step reactions. Firstly, precursor diblock copolymers (P(EMAm-b-tBMAn)) were obtained through sequential two-stage ATRP reactions of 2-(N-ethyl-N-phenylamino)ethyl methacrylate (EMA) and tert-butyl methacrylate (tBMA). Then, 4-amino-4′-cyanoazobenzene chromophores were introduced by azo-coupling reaction of P(EMAm-b-tBMAn) with diazonium salt of 4-aminobenzonitrile. Finally, P(CNAZOm-b-MAAn) was obtained through selective hydrolysis of the tert-butyl ester linkages in the tBMA blocks. Three block copolymers with the same CNAZO block length (m = 100) and different MAA block lengths (n = 5, 13, 23) were prepared by this method. The polymer and copolymers prepared in the process were characterized by GPC, 1H NMR, UV-vis, DSC and TGA measurements. Results show that P(CNAZOm-b-MAAn) forms spherical micellar aggregates by gradually increasing the water content in THF/H2O mixtures. The diameters of the spherical aggregates are related to the composition of the block copolymers and the water-adding rate. The block copolymer with larger molecular weight of the hydrophilic MAA block forms the aggregates with the smaller average size. The increase of the water-adding rate also shows an effect to reduce the diameters. Upon irradiation with a linearly polarized Ar+ laser beam, the spherical aggregates can be elongated in the light polarization direction. The deformation degree shows an almost linear dependence on the light irradiation time in the testing period. The deformed aggregates can recover the original spherical shape after thermal annealing at a temperature above Tg of the block copolymer.  相似文献   

6.
Grafting of tert‐butyl acrylate (tBuA), methyl methacrylate (MMA), and styrene (St) monomers (M) by Cu(I)‐mediated ATRP from polystyrene (PSt) macroinitiator (Mn = 5620, polydispersity index, PDI = 1.12), containing initiating 2‐bromopropionyloxy groups (I) (bound to 34% of aromatic cores; 11 groups per backbone), was performed using conditions suitable for the respective homopolymerizations. The preparation of PSt‐g‐PtBuA in bulk using an initial molar ratio [M]0/[I]0 = 140 had a controlled character up to Mn = (132–148) × 103 (PDI = 1.08–1.16). With MMA and St and using the same [M]0/[I]0, preliminary experiments were made; the higher the monomer conversion, the broader was the distribution of molecular weight of the products. Graft copolymerizations of all these monomers at [M]0/[I]0 = 840 or 1680 were successfully conducted up to high conversions. Low‐polydispersity copolymers, with very long side chains, in fact star‐like copolymers, were obtained mainly by tuning the deactivator amount in the reaction mixture. (PSt‐g‐PtBuA, DPn,sc (DP of side chain) = 665, PDI = 1.24; PSt‐g‐PMMA, DPn,sc = 670, PDI = 1.43; PSt‐g‐PSt, DPn,sc = 324, PDI = 1.11). Total suppression of intermolecular coupling was achieved here. However, the low concentrations of initiator required long reaction times, leading sometimes to formation of a small amount (~5%) of low‐molecular‐weight polymer fraction. This concomitant process is discussed, and some measures for its prevention are proposed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3662–3672, 2006  相似文献   

7.
Weipu Zhu 《Polymer》2005,46(19):8379-8385
Rare earth (Nd, Y, La) p-tert-butylcalix[n]arene (n=4, 6, and 8) complexes alone have been developed to catalyze random and block copolymerizations of trimethylene carbonate (TMC) and 2,2-dimethyltrimethylene carbonate (DTC). The random or block structure and thermal behavior of the copolymers have been characterized by SEC, NMR, DSC, XRD and PLM. Random copolymer with Mw of 14,100 and Mw/Mn of 1.36 was prepared by neodymium p-tert-butylcalix[6]arene complex under the conditions: [TMC+DTC]0/[Nd]=400, 80 °C, 8 h. The reactivity ratios of TMC and DTC are measured to be rTMC=4.68 and rDTC=0.163, respectively. Random copolymerization could be well designed by the feeding ratio to prepare copolymers with controlled Tm and Tg. Only 8% TMC units in the polymer chain destroyed the crystallization of PDTC showing no Tm of the copolymer in the DSC analysis.  相似文献   

8.
Homogeneous atom transfer radical polymerization of methyl methacrylate (MMA) under microwave irradiation (MI) with low concentration of initiating system [ethyl 2-bromobutyrate (EBB)/CuCl/N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA)] was successfully carried out in N,N-dimethylformamide (DMF) at 69 °C. Plots of ln ([M]0/[M]) vs. time and molecular weight evolution vs. conversion showed a linear dependence. A 27.3% conversion for a polymer with number-average molecular weight (Mn) of 57,280 and a polydispersity index (PDI) of 1.19, was obtained under MI (360 W) with the ratio of [MMA]0/[EBB]0/[CuCl]0/[PMDETA]0=2400/1/2/2 in only 150 min; but 963 min was needed under conventional heating (CH) process to reach a 26.0 % conversion (Mn=63,990 and PDI=1.14) under identical polymerization conditions, indicating a significant enhancement of the polymerization rate under MI.  相似文献   

9.
Jinseck Kim  In Young Song 《Polymer》2011,52(17):3704-3709
Novel thiophene-based all-conjugated block copolymers consisting of 3-hexylthiophene and 3-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}thiophene were synthesized using the Grignard metathesis (GRIM) polymerization method in the presence of Ni(dppp)Cl2. Favorable transfer of the catalytic site from an electron-poor precursor to an electron-rich monomer was found to produce the block copolymer. The molecular weights of the copolymers increased slightly with increasing polymerization temperature (10.1 × 103Mn (35 °C) → 11.1 × 103Mn (55 °C)), suggesting that transit of the catalytic site was accelerated at high temperatures. Size exclusion chromatography, UV-vis and photoluminescence spectroscopies, and cyclic voltammetry measurements confirmed that the polymers were block copolymers. The blocks were associated and organized relative to one another in adjacent chains.  相似文献   

10.
A series of Poly(l-lysine)m-b-poly[N-(N′,N′-diisopropylaminoethyl) aspartamide]n copolymers, abbreviated as PLLm-b-P[Asp(DIP)]n were designed and synthesized via ring-opening polymerization(ROP), click chemistry, aminolysis and hydrolysis. Using 1H NMR, FT-IR and GPC, the structures and compositions of these copolymers have been verified. Through feed ratio control, block copolymer PLLm-b-P[Asp(DIP)]n with different PLL and PAsp(DIP) block lengths were obtained, which can be modified to adjust the pH responsiveness and the self-assembling behaviors of the PLLm-b-P[Asp(DIP)]n. From the results of DLS, TEM and 1H NMR, these block copolymers can form stable micelles with a partially hydrated PAsp(DIP) core and a PLL corona at pH 7.4. While as demonstrated by 1H NMR and TEM, these PLLm-b-P[Asp(DIP)]n micelle was disassembled due to further protonation of the tertiary amine in the PAsp(DIP) block at pH 5.4. These pH responsive character of the PLLm-b-P[Asp(DIP)]n micelles made them as potential pH responsive gene delivery system which may co-deliver drug and DNA simultaneously.  相似文献   

11.
A polymerized ionic liquid (PIL) diblock copolymer with a long alkyl side-chain, poly(MMA-b-MUBIm-Br), was synthesized at various compositions from an ionic liquid monomer, (1-[(2-methacryloyloxy)undecyl]-3-butylimidazolium bromide) (MUBIm-Br), and a non-ionic monomer, methyl methacrylate (MMA). The PIL diblock copolymer was synthesized via post-functionalization from its non-ionic precursor PIL diblock copolymer, poly(MMA-b-BrUMA) (BrUMA = 11-bromoundecyl methacrylate), which was synthesized via the reverse addition fragmentation chain transfer (RAFT) polymerization technique. Differential scanning calorimetry reveals two distinct constant glass transition temperatures (Tgs) with a low PIL segment Tg. These PIL block copolymers result in easily processable, flexible, transparent films with high mechanical strength. A high bromide ion conductivity of 64.85 mS cm−1 at 80 °C and 90% RH was measured for the PIL diblock copolymer with an ion exchange capacity (IEC) of 1.44 meq/g (23.3 mol% MUBIm-Br). Interestingly, this result was three times higher than its analogous PIL homopolymer (2.75 meq/g; 100 mol% MUBIm-Br) and an order of magnitude higher than a PIL block copolymer from a previous study with similar chemistry, similar IEC, higher water content, but shorter alkyl side-chain length. Ion conductivity did not scale as expected with water content, which is unusual for water-assisted ion transport (e.g., protons, hydroxide, chloride) in ion-containing polymers, and therefore suggests other mechanisms that impact ion transport in PIL block copolymers.  相似文献   

12.
Andrew B. Lowe  Ran Wang 《Polymer》2007,48(8):2221-2230
We report herein the synthesis of hydrophilic-hydrophilic AB diblock copolymers of 3-O-methacryloyl-d-galactopyranose (MAGP) with 2-(dimethylamino)ethyl methacrylate (DMAEMA). These materials were obtained from precursor AB diblock copolymers of 3-O-methacryloyl-1,2:3,4-di-O-isopropylidene-d-galactopyranose (MAIpGP) and DMAEMA. The well-defined precursor block copolymers were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization in organic media employing dithiobenzoates as the mediating agents. We show that the homopolymerization of MAIpGP proceeds in a controlled fashion as judged by the linear pseudo-first-order kinetic plot, the linear relationship between the number average molecular weight (Mn) and the degree of conversion, and the resulting low polydispersity indices. Homopolymers of MAIpGP were employed as macro chain transfer agents for the preparation of the target AB diblock copolymers with DMAEMA. We show that PMAIpGP homopolymers are readily and quantitatively converted to the corresponding poly(3-O-methacryloyl-d-galactopyranose) (PMAGP) species according to a literature procedure. In a control experiment we demonstrate that these deprotection conditions do not adversely affect a DMAEMA homopolymer.  相似文献   

13.
Amphiphilic block copolymers, methoxy polyethylene glycol-b-poly(butyl methacrylate), were synthesized via activators regenerated by electron transfer for atom transfer radical polymerization(ARGET ATRP) of butyl methacrylate (BMA), where pentamethyldiethylene triamine (PMDETA) was utilized as the ligand. The results show that the minimum amount of the catalyst required in the ARGET ATRP of BMA with a high degree of control depends upon the molar ratio of [catalyst]0/[initiator]0. With PMDETA as the ligand and methoxy polyethylene glycol 2-bromo-iso-butyrate (MPEG-Br) as the macro-initiator, the ratio of [CuBr2]0/[MPEG-Br]0 should be higher than 0.025:1. At this value, the copper catalyst level can be lowered to 50 ppm when the degree of polymerization of the BMA segment is set at 500. Reaction conditions that impact the controllability of the polymerization and the corresponding properties of the block copolymers were investigated.  相似文献   

14.
Weihui Xie 《Polymer》2007,48(23):6791-6798
Amphiphilic biodegradable mPEG-PCL diblock copolymers have been synthesized using rare earth catalyst: yttrium tris(2,6-di-tert-butyl-4-methylphenolate) [Y(DBMP)3] in the presence of monomethoxy poly(ethylene glycol) (mPEG, Mn = 5000) as macro-initiator. The diblock architecture of the copolymers was thoroughly characterized by 1H NMR, 13C NMR and SEC. The molecular weights of mPEG-PCLs can be well controlled by adjusting the feeding molar ratio of ?-CL to mPEG. Thermal and crystallization behaviors of the diblock copolymers were investigated by DSC and POM (polarized optical microscope). The crystallization property of mPEG-PCL block copolymers depends on the length of PCL blocks. As the molecular weight of PCL block increased, the crystallization ability of mPEG block was visibly restrained. Aqueous micelles were prepared by dialysis method. The critical micelle concentration of the copolymers, which was determined to be 0.9-6.9 mg/L by fluorescence technique, increased with the decreasing of PCL block length. The particle sizes determined by DLS were 30-80 nm increasing with the PCL block length. TEM images showed that these micelles were regularly spherical in shape.  相似文献   

15.
Liang Tong 《Polymer》2008,49(21):4534-4540
Perfluorocyclobutyl aryl ether-based amphiphilic diblock copolymer containing hydrophilic poly(ethylene glycol) segment was synthesized by atom transfer radical polymerization (ATRP). Perfluorocyclobutyl-containing methacrylate-based monomer, 4-(4′-p-tolyloxyperfluorocyclobutoxy)benzyl methacrylate, was prepared firstly, which can be polymerized by ATRP in a controlled way to obtain well-defined homopolymers with narrow molecular weight distributions (Mw/Mn ≤ 1.30). The molecular weights increased linearly with the conversions of monomer and the apparent polymerization rate exhibited first-order relation with respect to the concentration of monomer. ATRP of 4-(4′-p-tolyloxyperfluorocyclobutoxy)benzyl methacrylate was initiated by PEG-based macroinitiators with different molecular weights to obtain amphiphilic diblock copolymers with narrow molecular weight distributions (Mw/Mn < 1.35) and the number of perfluorocyclobutyl linkage can be tuned by the feed ratio and the conversion of the fluorine-containing methacrylate monomer. The critical micelle concentrations of these amphiphilic diblock copolymers in water and brine were determined by fluorescence probe technique. The morphologies of the micelles were found to be spheres by TEM.  相似文献   

16.
Copolymerizations of ?-caprolactone (CL) with monohydroxyl or dihydroxyl poly(ethylene glycol) (PEG) were successfully performed using Novozyme-435 (immobilized lipase B from Candida antartica) as catalyst. Diblock and triblock copolymers with different compositions were characterized by 1H NMR, GPC, DSC and X-ray diffraction. The enzymatic copolymerization carried out in toluene presented higher reaction rate and yield than that in bulk. Increasing the [CL]/[EO] feed ratio resulted in increases of molecular weight (Mn) of copolymers. Moreover, the compositions of triblock copolymers were closer to the monomer feed ratios than those of diblock copolymers. The resulting copolymers were all semicrystalline, the crystalline structure being of the PCL type. Solution cast films were allowed to degrade in a pH 7.0 phosphate buffer solution containing Pseudomonas lipase. Weight loss data showed that the introduction of PEG segments to the PCL main chain did not alter the enzymatic degradation of PCL significantly.  相似文献   

17.
Dong Yang  Yongjun Li  Sen Zhang 《Polymer》2010,51(8):1752-1760
A series of well-defined binary hydrophilic-fluorophilic diblock copolymers were synthesized by successive atom transfer radical polymerization (ATRP) of methoxylmethyl acrylate (MOMA) and 4-(4′-p-tolyloxyperfluorocyclobutoxy)benzyl methacrylate (TPFCBBMA) followed by the acidic selective hydrolysis of the hydrophobic poly(methoxymethyl acrylate) (PMOMA) segment into the hydrophilic poly(acrylic acid) (PAA) segment. ATRP of MOMA was initiated by 2-MBP at 50 °C in bulk to give two different PMOMA homopolymers with narrow molecular weight distributions (Mw/Mn ≤ 1.15). PMOMA-b-PTPFCBBMA well-defined diblock copolymers were synthesized by ATRP of TPFCBBMA at 90 °C in anisole using Br-end-functionalized PMOMA homopolymer as macroinitiator and CuBr/PMDETA as catalytic system. The final PAA-b-PTPFCBBMA amphiphilic diblock copolymers were obtained via the selective hydrolysis of PMOMA block in dilute HCl without affecting PTPFCBBMA block. The critical micelle concentrations (cmc) of PAA-b-PTPFCBBMA amphiphilic copolymers in aqueous media were determined by fluorescence spectroscopy using pyrene as probe and these diblock copolymers showed different micellar morphologies with the changing of the composition.  相似文献   

18.
Jessica Gwyther  Ian Manners   《Polymer》2009,50(23):5384-5389
Living anionic ring-opening polymerisation of isopropylmethylsila[1]ferrocenophane yields poly(ferrocenylisopropylmethylsilane) (PFiPMS) with controlled molecular weights and narrow polydispersities up to Mn = ca. 20,000 Da. Polystyrene-b-poly(ferrocenylisopropylmethylsilane) (PS-b-PFiPMS) diblock copolymers have been prepared via sequential living anionic polymerisation. These materials are examples of diblock copolymers with an amorphous, organometallic block with a glass transition temperature (Tg) above room temperature (60 °C). High molecular weight diblock copolymers (Mn = 42,000–51,000 Da) were targeted with low polydispersities (PDI = 1.1). As both blocks are amorphous, these materials self-assemble into predictable morphologies in the bulk state with well-ordered nanodomains.  相似文献   

19.
Cyclooctadiene (COD) was polymerized via ring-opening metathesis polymerization (ROMP) in the presence of 5-norbornene-exo, endo-2-carboxylic acid 2,2,6,6-tetramethyl-4-piperidinyl ester (PN) or 5-norbornene-2-exo-3-endo-dicarboxylic acid bis(2,2,6,6-tetramethyl-4-piperidinyl) ester (2,3-PN) to prepare a new kind of polymeric hindered amine (HALS) stabilizers. Unexpectedly, hindered amine norbornene derivatives PN and 2,3-PN did not act as comonomer but acted as chain transfer agent (CTA). The resulting polymers were characterized by gel permeation chromatography (GPC) and 1H-NMR. Investigation of polymerization behavior showed that hindered amine groups were introduced into polymer chain by virtue of chain degradation resulted from chain transfer. The molecular weight (M n) and HALS content of the resulting polymeric HALS stabilizer could be regulated by varying molar ratio of initial monomer to catalyst.  相似文献   

20.
In the first part of this article, the method for preparation of heteroarm star (A n B n star-block) copolymers from diblock macromonomers possessing central functional groups is reviewed. These diblock macromonomers formed a microphase-separated structure in the solid state. The central functional groups at the position of the block junction were located regularly at the domain interface. The microgelation of diblock copolymer films formed A n B n star-block copolymers by organization effects. The second section reviews the methods for preparation of (AB) n star-block copolymers from diblock macromonomers possessing a terminal vinylbenzyl group. The microgelation in micelles between diblock macromonomers and linking agent also formed (AB) n star-block copolymers. Finally, the phase stability criteria of these star-block copolymers are reported briefly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号