首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactor blends of polyethylene/poly(ethylene-co-1-octene) resins with bimodal molecular weight and bimodal short chain branching distributions were synthesized in a two-step polymerization process. The compositions of these blends range from low molecular weight (LMW) homopolymer to high molecular weight (HMW) copolymer and, vice versa, HMW homopolymer to LMW copolymer. The physical properties of the blends were found to be consistent with the nature of the individual components. For the tensile properties, the stiffness decreases with increasing the fraction of the copolymer, regardless of the molecular weight of the homopolymer fraction. For these blends with bimodal microstructures, it was confirmed that the degree of crystallinity governs the stiffness of the polymer. However, the energy dampening properties of the polymers benefit from the presence of the copolymer. A balance of stiffness and toughness can be obtained by altering the composition of the blends. For some blends, the presence of HMW homopolymer can dominate the tensile properties, showing little variation in the stiffness with increased addition of copolymer. It was also demonstrated that the testing conditions and thermal treatment of the polymer greatly influence the resulting elastic and energy dampening properties. Depending on the desired application, annealing these polymers (especially very low density copolymers) not only increases the crystallinity and stiffness, but also changes the frequency response of the dynamic mechanical properties.  相似文献   

2.
薛锋  胡庆云 《塑料工业》2007,35(4):16-20,23
采用两段淤浆聚合工艺合成了由低摩尔质量的均聚物和高摩尔质量的共聚物组成的、具有宽峰或双峰摩尔质量分布的高密度聚乙烯大型中空容器级树脂。通过调节第一段和第二段聚合过程中聚合物的熔体质量流动速率来控制摩尔质量的大小及其分布;采用控制第二段共聚物中共聚单体数量来调节聚合物密度;控制第一段小分子数目,增加第二段摩尔质量或调整密度获得最大耐环境应力开裂性(ESCR)。随着共聚单体丁烯-1加入量的增加,反应釜共混物的密度、熔点、结晶度、拉伸屈服应力、断裂伸长率减少。随着高摩尔质量共聚物的含量增加,屈服应力、熔点、密度、结晶度减少,摩尔质量分布的双峰特性也增加,反应釜共混物的均聚物峰的高度减少,共聚物峰的高度增加。流变性能结果表明,通过改变共混物的组分可以获得力学性能和加工性能的平衡。  相似文献   

3.
采用溶胶-凝胶法,将苯乙烯-丙烯酸(PSA)共聚物包覆在以硅胶/MgCl2为载体的TiCl3催化剂上,负载(n-BuCp)2ZrCl2后制得Ziegler-Natta/茂金属复合催化剂。实验在同一反应釜中进行两段反应模拟双釜串联聚合工艺。在第一段反应中制备高分子量高支化度的乙烯/1-己烯共聚物,在第二段反应中,制备低分子量低支化度的聚合物。淤浆聚合结果表明,所得聚乙烯的熔融流动比(MI21.6/MI2.16)较宽,达到79,分子量分布达到18.6。两段反应得到的聚乙烯共混物的结晶度和熔融温度介于第一段、第二段单独反应时所得产物的结晶度和熔融温度之间,且DSC曲线具有单一的熔融峰,说明该两段反应法制备的聚乙烯共混物具有良好的共结晶行为。动力学研究同时表明,苯乙烯-丙烯酸共聚物的引入,使得催化剂的活性缓慢释放,活性持续时间明显长于负载于无机载体的催化剂,有利于灵活地调节各段反应的停留时间。  相似文献   

4.
用两段淤浆聚合工艺合成了具有宽峰或双峰相对分子质量分布的高密度聚乙烯(HDPE)/(乙烯/丁烯-1)共聚树脂的反应釜共混聚合物。随着丁烯-1用量的增加,共混物的密度、熔点、结晶度、拉伸屈服应力减小,而断裂伸长率增加。随着高相对分子质量共聚物的含量增加,熔点、密度、结晶度减小,相对分子质量分布的双峰特性也更明显。通过调整两段聚合物的熔体流动速率、两段聚合物之比来控制相对分子质量大小及其分布。控制第一段小分子数目,增加第二段相对分子质量或减小密度可获得最大耐环境应力开裂性能。  相似文献   

5.
The dynamic rheological and mechanical properties of the binary blends of two conventional high‐density polyethylenes [HDPEs; low molecular weight (LMW) and high molecular weight (HMW)] with distinct different weight‐average molecular weights were studied. The rheological results show that the rheological behavior of the blends departed from classical linear viscoelastic theory because of the polydispersity of the HDPEs that we used. Plots of the logarithm of the zero shear viscosity fitted by the Cross model versus the blend composition, Cole–Cole plots, Han curves, and master curves of the storage and loss moduli indicated the LMW/HMW blends of different compositions were miscible in the melt state. The tensile yield strength of the blends generally followed the linear additivity rule, whereas the elongation at break and impact strength were lower than those predicted by linear additivity; this suggested the incompatibility of the blends in solid state. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Polyethylene blends with bimodal molecular weight distribution were prepared by blending a high molecular weight polyethylene and a low molecular weight polyethylene in different ratios in xylene solution. The blends and their components were characterized by the high temperature gel permeation chromatograph (GPC), different scanning calorimetry (DSC), and small amplitude oscillatory shear experiments. The results showed that the dependence of zero‐shear viscosity (η0) on molecular weight followed a power law equation with an exponent of 3.3. The correlations between characteristic frequency (ω0) and polydispersity index, and between dynamic cross‐point (Gx) and polydispersity index were established. The complex viscosity (η*) at different frequencies followed the log‐additivity rule, and the Han‐plots were independent of component and temperature, which indicated that the HMW/LMW blends were miscible in the melt state. Moreover, the thermal properties were very similar to a single component system, suggesting that the blends were miscible in the crystalline state. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
As a new grade of polyethylene materials with unique chain architectures, hyperbranched polyethylenes synthesized by chain walking ethylene polymerization have great potential for industrial application as novel viscosity index (VI) improver in lubricant formulation. Although high‐molecular‐weight hyperbranched polyethylenes (weight‐average molecular weight of about 105 g/mol) possess high shear stability, their viscosity thickening properties are compromised due to their compact chain architectures. In this work, we aim at improving their viscosity thickening property by increasing polymer molecular weight. A range of hyperbranched polymers of various enhanced molecular weights were synthesized by chain walking ethylene polymerization in the presence of small amounts of 1,4‐butanediol diacrylate as a difunctional crosslinker. The molecular weight dependences of viscosity thickening power and shear stability of these polymers containing crosslinking structures were evaluated. It is found that, with the increase of molecular weight via crosslinking, these polymers showed consistently enhanced viscosity thickening power, but with the reduced shear stability. However, their shear stability was still significantly better compared to linear polymers. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

8.
Ming Jiang  Xiu-yun Huang  Tong-yin Yu 《Polymer》1983,24(10):1259-1266
A series of blends of homopolystyrene and styrene-g-butadiene copolymer with different combinations of molecular weights of the copolymer and graft polystyrene segments have been prepared. Phase separation behaviour of the blends has been examined by electron microscopy. The results reveal a regular change of morphology of the blends with the relative molecular weights of the free and graft polystyrene chains. The observed relationships between compatibility of the homopolymer and copolymer and the relative molecular weight are generally in agreement with that observed previously in homopolymer-block copolymer blends. Taking the inherent polydispersity of the molecular weight of the component polymers into account, some peculiarities of the morphologies of the blends have been explained.  相似文献   

9.
Rhutesh K. Shah 《Polymer》2004,45(9):2991-3000
A melt mixing masterbatch process for preparing nylon 6 nanocomposites that provides good exfoliation and low melt viscosities has been investigated. It is known that high molecular weight (HMW) grades of nylon 6 lead to higher levels of exfoliation of organoclays than do low molecular weight (LMW) grades of nylon 6. However, LMW grades of nylon 6 have lower melt viscosities, which are favorable for certain commercial applications like injection molding. To resolve this, a two-step process to prepare nanocomposites based on nylon 6 is explored here. In the first step, a masterbatch of organoclay in HMW nylon 6 is prepared by melt processing to give exfoliation. In the second step, the masterbatch is diluted with LMW nylon 6 to the desired montmorillonite (MMT) content to reduce melt viscosity. Wide angle X-ray scattering, transmission electron microscopy, and stress-strain analysis were used to evaluate the effect of the clay content in the masterbatch on the morphology and physical properties of the final nanocomposite. The melt viscosity was characterized by Brabender Torque Rheometry. The physical properties of the nanocomposites prepared by the masterbatch approach lie between those of the corresponding composites prepared directly from HMW nylon 6 and LMW nylon 6. A clear trade-off was observed between the modulus and melt processability. Masterbatches that have lower MMT content offer a significant decrease in melt viscosity and a small reduction in modulus compared to nanocomposites prepared directly from HMW nylon 6. Higher MMT concentrations in the masterbatch lead to a less favorable trade-off.  相似文献   

10.
The melt rheological behaviors in both linear and nonlinear regions were studied for binary blends of high-density polyethylenes (HDPEs) with unimodal molecular weight distribution (MWD). The surface distortion of the component resin with high-molecular-weight (HMW) and wide MWD through the capillary die could be alleviated with the addition of the component resin with low-molecular-weight (LMW) and narrow MWD. At the concentration of LMW component resin above 50 wt%, the negative deviation behavior (NDB) was observed in both the plots of dynamic storage modulus and complex viscosity versus the composition of the blends, furthermore, the Cole-Cole plot of the blend was below that of the pure LMW component, indicating the characteristics of immiscibility. However, the characteristic of homogeneity was revealed in the logG′~logG″ curves that possessed almost identical slopes for all the blends. The anomalous phenomena were attributed to the slow diffusion of HMW ingredients in the blends, which was aggravated by the inefficient stress transfer during melt blending at high concentration of LMW component.  相似文献   

11.
I-Chen Chou  Wen-Yen Chiu 《Polymer》2010,51(12):2527-3535
Controlled free radical polymerizations of methyl methacrylate and styrene in bulk by 1,1-diphenylethene (DPE) were demonstrated in a two-step process, preheating treatment of initiators followed by a living polymerization of monomers. Over the course of polymerization, continuous growing of polymers with unimodal molecular weight distribution and a relatively small polydispersity index (around 1.5 even in the range of Mn ∼ 105 g/mol) on GPC diagrams was observed. In our previous study, the DPE controlled radical polymerization with constant molecular weight throughout the polymerization was caused by the intrinsically low reactivation rate constant (k2) of DPE capped dormant chains. To raise the reaction temperature in order to increase k2, a continuous molecular weight growing but broader or bimodal molecular weight distribution was obtained if the living polymerization was conducted in a one-step process. In this work, a two-step polymerization process was proposed. In the first step, the initiator 2,2′-azobisisobutyronitrile (AIBN), control agent DPE, and small amount of monomer were mixed and heated for a specific time period. Then a living polymerization of monomers was conducted in the second step of polymerization. This two-step new approach had minimized the imperfections of the DPE system; thus the polymerization showed better living characters and revealed its enhanced control abilities.  相似文献   

12.
Three copolymers of acrylonitrile-methacrylic acid [P(AN-co-MAA)], acrylonitrile-ammonium salt of methacrylic acid [P(AN-co-AMA)], acrylonitrile-methacrylamide-itaconic acid [P(AN-MAM-IA)] and PAN homopolymer were synthesized by aqueous dispersion polymerization technique. The polymerization conditions were adjusted in such a way to produce polymers with similar composition and molecular weight. The influence of comonomer nature on the viscoelastic behavior and spinnability of copolymer/dimethylsulfoxide (DMSO) solutions were investigated. It was found that incorporation of these comonomers into PAN chains led to intense decrease in zero-shear viscosity to lower value as well as appearance of distinct plateau in comparison with PAN homopolymer. However, comparing the results of complex viscosity and shear viscosity of each PAN polymer showed different shear-thinning behavior, typical deviation from Cox-Merz rule at high deformation rates. Amongst these copolymer solutions, P(AN-co-AMA) exhibited the longest relaxation time (λ) at low and medium frequencies. The lower values of frequency dependence of G′ (n′) and cross over frequency (ωc) of storage modulus (G′) and loss modulus (G″) indicated that P(AN-co-AMA) was more elastic than other PAN copolymer solutions. The log-log plots of tan δ versus ω demonstrated that the comonomer nature affects the sol-gel transition behavior and elastic character of copolymer solutions. On average, based upon the slope of logG? versus logG? data, the incorporation of comonomers inside PAN chains led to ~50 % increase in the homogeneity of solutions compared to PAN homopolymer.  相似文献   

13.
The temperature-composition phase diagrams for six pairs of diblock copolymer and homopolymer are presented, putting emphasis on the effects of block copolymer composition and the molecular weight of added homopolymers. For the study, two polystyrene-block-polyisoprene (SI diblock) copolymers having lamellar or spherical microdomains, a polystyrene-block-polybutadiene (SB diblock) copolymer having lamellar microdomains, and a series of polystyrene (PS), polyisoprene (PI), and polybutadiene (PB) were used to prepare SI/PS, SI/PI, SB/PS, and SB/PB binary blends, via solvent casting, over a wide range of compositions. The shape of temperature-composition phase diagram of block copolymer/homopolymer blend is greatly affected by a small change in the ratio of the molecular weight of added homopolymer to the molecular weight of corresponding block (MH,A/MC,A or MH,B/MC,B) when the block copolymer is highly asymmetric in composition but only moderately even for a large change in MH,A/MC,A ratio when the block copolymer is symmetric or nearly symmetric in composition. The boundary between the mesophase (M1) of block copolymer and the homogeneous phase (H) of block copolymer/homopolymer blend was determined using oscillatory shear rheometry, and the boundary between the homogeneous phase (H) and two-phase liquid mixture (L1+L2) with L1 being disordered block copolymer and L2 being macrophase-separated homopolymer was determined using cloud point measurement. It is found that the addition of PI to a lamella-forming SI diblock copolymer or the addition of PB to a lamella-forming SB diblock copolymer gives rise to disordered micelles (DM) having no long-range order, while the addition of PS to a lamella-forming SB diblock copolymer retains lamellar microdomain structure until microdomains disappear completely. Thus, the phase diagram of SI/PI or SB/PB blends looks more complicated than that of SI/PS or SB/PS blends.  相似文献   

14.
基于相转化法制备了复合微球载体负载的(n-BuCp)2ZrCl2/PSA/TiCl3复合催化剂。利用聚合物膜将两个传统的催化剂(茂金属和Ziegler-Natta催化剂)隔开,即先将Ziegler-Natta催化剂负载于无机载体上作为内核,随后将聚合物膜均匀沉积在无机载体催化剂表面,最后将茂金属催化剂溶液迅速负载于聚合物膜上,得到“内钛外茂”型(n-BuCp)2ZrCl2/PSA/TiCl3复合催化剂。在实验室条件下,模拟工业淤浆双釜串联反应工艺,在第一段反应中制备超高分子量(1.4×106 g/mol)高支化度的乙烯/1-己烯共聚物,在第二段反应中,制备低分子量低支化度的聚合物。调节两段反应的聚合时间,制备了不同组成的聚乙烯共混物。通过DSC和流变学的方法研究了聚乙烯共混物的共混性能,并与机械共混法得到的聚乙烯共混物的共混性质进行比较。  相似文献   

15.
In-reactor blends of polypropylene/poly(ethylene-co-propylene) with complex microstructure, synthesized through different polymerization procedures; two-step (one homopolymerization and one copolymerization under high ethylene concentration) and three-step (with an additional copolymerization step under low ethylene concentration), were characterized by rheological measurements. The effects of a change in the polymerization process on the types and amounts of block copolymers in the blends were evaluated using small amplitude oscillation rheometry in the linear viscoelastic region. The Palierne model in its complete form was employed to model the rheological behavior of the blends. For this analysis the reactor products were separated into xylene cold insoluble (XCI) and xylene cold soluble fractions. Besides, another two copolymer fractions at 80 and 100 °C, which are crystallizable copolymer fractions and contain block copolymers rich in polyethylene and polypropylene, respectively, were separated from XCI fraction by xylene using temperature gradient elution fractionation method. Considering all copolymer fractions as dispersed and the remained fraction (mostly polypropylene) as matrix phase, it was shown that the rheological properties of the blends could not be predicted by Palierne model. It was found that only by considering part of block copolymer fractions having long polypropylene sequences along with polypropylene homopolymer as one phase, the rheological properties of the blends could be predicted by Palierne model. By rheological modeling, it was confirmed that the amounts of copolymers with long polypropylene sequences which are miscible with the matrix are higher in the case of three-step blends and also the elasticity of three-step polymerized blends is higher than two-step polymerized blends.  相似文献   

16.
Ming Jiang  Xiuyun Huang  Tongyin Yu 《Polymer》1985,26(11):1689-1694
An AB-crosslinked copolymer (ABCP) with polycarbonate as A-chain and polystyrene as B-chain was prepared and characterized. A series of blends of the ABCP and homopolystyrene fractions with different molecular weights were prepared and examined by electron microscopy. The results show that the miscibility between the homopolymer and the like chains in the copolymer is limited even if the molecular weight of the former is much less than that of the latter. Considering the relatively large miscibility in diblock copolymer/homopolymer blends and the limited miscibility in ABCP/homopolymer-A blends reported in literature, this study leads to an argument that the molecular architecture of a copolymer is an important factor governing its miscibility with homopolymer. The relatively complicated architecture of ABCPs causing more restriction to the chain conformation might be one of the main reasons for its low miscibility with homopolymers.  相似文献   

17.
Two strategies for introducing long chain branching (LCB) to a polypropylene homopolymer (PP) are evaluated in terms of the product's molecular weight and branching distributions, and in terms of melt-state shear and extensional rheological properties. Single step processes involving radical-mediated addition of PP to triallyl phosphate are shown to generate bimodal products with highly differentiated chain populations, while a two step sequence involving PP addition to vinyltriethoxysilane followed by moisture-curing is shown to generate more uniform architectures. As a result, the sequential approach can improve low-frequency shear viscosity and extensional strain hardening characteristics while staying below the polyolefin's gel point. The composition and molecular weight distribution transformations that underlie sequential LCB techniques are discussed.  相似文献   

18.
Homopolymer brushes of poly(N,N-dimethylacrylamide) (PDMA), poly(methoxyethylacrylamide) (PMEA) and poly(N-isopropylacrylamide)(PNIPAM) grown on atom transfer radical polymerization (ATRP) initiator functionalized latex particles were used as macroinitiators for the synthesis of PDMA-b-PNIPAM/PMEA, PMEA-b-PDMA/PNIPAM and PNIPAM-b-PDMA block copolymer brushes by surface initiated aqueous ATRP. The grafted homopolymer and block copolymer brushes were analyzed for molecular weight, molecular weight distribution, chain grafting density, composition and hydrodynamic thickness (HT) using gel permeation chromatography-multi-angle laser light scattering, 1H NMR, particle size analysis and atomic force microscopy (AFM) techniques. The measured graft molecular weight increased following the second ATRP reaction in all cases, indicating the second block had been added. Chain growth depended on the nature of the monomer used for block copolymerization and its concentration. Unimodal distribution of polymer chains in GPC with non-overlap of molar mass-elution volume curves implied an efficient block copolymerization. This was supported by the increase in HT measured by particle size analysis, equilibrium thickness observed by AFM and the composition of the block copolymer layer by 1H NMR analysis, both in situ and on cleaved chains in solution. 1H NMR analysis of the grafted latex and cleaved polymers from the surface demonstrated that accurate determination of the copolymer composition by this method is possible without detaching polymer chains from surface. Block copolymer brushes obey the same power law dependence of HT on molecular weight as homopolymer brushes in good solvent conditions. The NIPAM-containing block copolymer brushes were sensitive to changes in the environment as shown by a decrease in HT with increase in the temperature of the medium.  相似文献   

19.
In this work we present an experimental study of shear and apparent elongational behavior of linear low-density (LLDPE) and low-density (LDPE) polyethylene blends by means of capillary rheometry. The characterization of these rheological properties is crucial in the design of a blend that combines the ease of processing of LDPE with the mechanical advantages of the LLDPE. Two different low-density polyethylenes and one common linear low-density polyethylene were used to prepare the blends. The results obtained indicate a strong sensitivity of the rheology of the blend to changes in the molecular weight of the LDPE employed. For the higher molecular weight LDPE, the shear viscosity of the blend was essentially equal to that of the LDPE homopolymer up to a concentration of 25% of LLDPE, whereas the apparent extensional viscosity was appreciably lower. For the lower molecular weight LDPE, the same trend was obtained regarding the shear viscosity, but in this case the apparent extensional viscosity of the blend was somewhat higher than that of the LDPE homopolymer.  相似文献   

20.
Natural polymers, as extracted from biomass, may exhibit large macromolecular polydispersity. We investigated the impact of low molar mass chitosan (LMW, DPw~115) on the properties of chitosan fibers obtained by wet spinning of chitosan solutions with bimodal distributions of molar masses. The fiber crystallinity index (CrI) was assessed by synchrotron X-ray diffraction and the mechanical properties were obtained by uniaxial tensile tests. The LMW chitosan showed to slightly increase the crystallinity index in films which were initially processed from the bimodal molar mass chitosan solutions, as a result of increased molecular mobility and possible crystal nucleating effects. Nevertheless, the CrI remained almost constant or slightly decreased in stretched fibers at increasing content of LMW chitosan in the bidisperse chitosan collodion. The ultimate mechanical properties of fibers were altered by the addition of LMW chitosan as a result of a decrease of entanglement density and chain orientation in the solid state. An increase of crystallinity might not be expected from LMW chitosan with a still relatively high degree of polymerization (DPw ≥ 115). Instead, different nucleation agents—either smaller molecules or nanoparticles—should be used to improve the mechanical properties of chitosan fibers for textile applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号