首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During melt mixing a ternary blend system comprised of a high density polyethylene matrix containing dispersed polystyrene and poly(methyl-methacrylate) spontaneously forms a composite droplet structure where the PS encapsulates the PMMA. This study demonstrates that the PS/PMMA composite droplet exhibits pure PS droplet behavior at a critical volume fraction of encapsulating phase (PS:PMMA∼0.6:0.4). This critical volume fraction is shown to be independent of the overall dispersed phase concentration, shell thickness or dispersed phase size. Furthermore, the effect is observed even though the PMMA is significantly more viscous than the encapsulating PS phase. Interfacial slip as well as the maintenance of a complete PS shell during deformation are proposed as being important factors related to this behavior. The blends were prepared via melt mixing using an internal mixer and the morphology was examined by electron microscopy.  相似文献   

2.
Ternary blends of PS and PMMA in a PE matrix were prepared by twin‐screw extrusion to investigate the core/shell encapsulation phenomenon in the composite droplet. The PS was found to encapsulate the PMMA to form composite droplets within the PE matrix as expected from the spreading coefficient theory. The effects of dispersed phase concentration, viscosity ratio, feeding sequence and twin‐screw operating conditions were investigated. The blend morphology was observed by scanning electron microscopy after selective extraction of either PS or PMMA, and average core and composite droplet diameters were determined by image analysis. Although it is known that the structure of composite droplet blends can be substantially altered through control of the volume fraction of the components in the dispersed phase, this study demonstrates that blends with a 1:1 composite droplet volume fraction are relatively stable to large variations in the minor phase viscosities and processing conditions. Twin‐screw extrusion thus provides a highly robust technique for the melt processing of blends possessing composite droplet morphologies. Polym. Eng. Sci. 44:749–759, 2004. © 2004 Society of Plastics Engineers.  相似文献   

3.
Correlation between the melt rheology and phase morphology of PP/PMMA/PS ternary blends during the shell formation process were studied in detail. In this PP-matrix ternary system, theoretical predictions in agreement with the direct SEM observations demonstrated the core-shell morphology with PMMA and PS phases as core and shell phases, respectively. Morphological observations revealed that the complete shell formation takes place at about 12 and 9 wt% of PS minor phase in ternary blends composed of low and high viscosity PMMAs, respectively. In terms of rheological properties, this was corresponding to the maximum value on the storage modulus versus PS content (shell thickness) curves. Encapsulation of high viscosity PMMA core particles at lower PS contents was related to the bigger particles and low interfacial area in this system compared to the system with low viscosity PMMA core particles. At high PS contents, single and multi-core structures were observed for composite droplets of ternary blends containing low and high viscosity PMMAs, respectively. The single core morphology of low viscosity PMMA particles was related to the coalescence of core particles after the coalescence of the corresponding shells, while high viscosity PMMA cores are less likely to coalescence, leading to creation of multi-core morphology in latter system.  相似文献   

4.
This works systematically investigates the interfacial properties of the binary and the ternary blends based on polystyrene (PS), ethylene octene copolymer (EOC), and styrene–ethylene–butylene–styrene (SEBS) by analyzing the melt linear rheological behavior of the blends and neat components. Moreover, the relationship between rheology, phase morphology, and mechanical properties of PS/EOC ternary blends with various quantities of SEBS were studied. The surface shear modulus (β) and interfacial tension values obtained by Palierne model indicated that the EOC/SEBS blend has the best interfacial properties, while the lowest interaction was found for PS/EOC blend. Based on the Palierne model and Harkin's spreading coefficients a core–shell type morphology with EOC phase encapsulated by the SEBS shell dispersed in the PS matrix was determined for the ternary blends. Scanning electron microscopy results revealed that both fibrillar and droplet forms of dispersed phase could be developed during the blending of PS and EOC in presence of SEBS. The extent of fibrillar morphology and interfacial interactions in PS/EOC/SEBS ternary blends was dependent on the SEBS content. The improvement of the mechanical properties of PS/EOC blends in the presence of SEBS was evidenced by the tensile and impact resistance experiments. The tensile strength reinforcement was more pronounced for the ternary blends with more fibrillar dispersed phase. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48791.  相似文献   

5.
The morphology of some ternary blends was investigated. In all of the blends polypropylene, as the major phase, was blended with two different minor phases, ethylene–propylene–diene terpolymer (EPDM) or ethylene–propylene–rubber (EPR) as the first minor phase and high‐density polyethylene (HDPE) or polystyrene (PS) as the second minor phase. All the blends were investigated in a constant composition of 70/15/15 wt %. Theoretical models predict that the dispersed phase of a multiphase polymer blend will either form an encapsulation‐type phase morphology or phases will remain separately dispersed, depending on which morphology has the lower free energy or positive spreading coefficient. Interfacial interaction between phases was found to play a significant role in determining the type of morphology of these blend systems. A core–shell‐type morphology for HDPE encapsulated by rubber was obtained for PP/rubber/PE ternary blends, whereas PP/rubber/PS blends showed a separately dispersed type of morphology. These results were found to be in good agreement with the theoretical predictions. Steady‐state torque for each component was used to study the effect of melt viscosity ratio on the morphology of the blends. It was found that the torque ratios affect only the size of the dispersed phases and have no appreciable influence on the type of morphology. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1129–1137, 2001  相似文献   

6.
Patrícia S. Calvão 《Polymer》2005,46(8):2610-2620
Here, the effect of concentration on the morphology and dynamic behavior of polymethylmethacrylate/polystyrene (PMMA/PS), for PS with two different molecular weight, and polymethylmethacrylate/polypropylene (PMMA/PP) blends was studied. The blends concentrations ranged from 5% to 30% of the dispersed phase (PS or PP). The dynamic data were analyzed to study the possibility of inferring the interfacial tension between the components of the blend from their rheological behavior using Palierne [Palierne JF. Rheol Acta 1990;29:204-14] [1] and Bousmina [Bousmina M. Acta 1999;38:73-83] [2] emulsion models. The relaxation spectrum of the blends was also studied. The dynamic behavior of 85/15 PS/PMMA blend were studied as a function of temperature. It was possible to fit both Palierne and Bousmina's emulsion models to the dynamic data of PMMA/PS blends, to obtain the interfacial tension of the blend. This was not the case for PMMA/PP. The relaxation spectrum of both blends was used to obtain the interfacial tension between the components of the blends. The values of interfacial tension calculated were shown to decrease when the concentration of the blends increased. It was shown using morphological analysis that this phenomenon can be attributed to the coalescence of the dispersed phase during dynamic measurements that occurs for large dispersed phase concentration. When the ‘coalesced’ morphology is taken into account in the calculations the interfacial tension inferred from rheological measurement did not depend on the concentration of the blend used. The values of interfacial tension found analyzing the dynamic behavior of one of the PMMA/PS blend were shown to decrease with temperature.  相似文献   

7.
Nick Virgilio  Basil D. Favis 《Polymer》2011,52(7):1483-1489
The activity of polystyrene-block-poly(l-lactide) (PS-b-PLLA) and polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer brushes located at a PS/PLLA interface were employed as a route to control the final microstructure of 95% void volume, ultraporous PLLA scaffolds. The latter were initially prepared from melt-processed quaternary blends of ethylene propylene diene rubber/poly(?-caprolactone)/polystyrene/poly(l-lactide) (EPDM/PCL/PS/PLLA) 45/45/5/5%vol. modified with the diblock copolymers. The blends display a layer comprised of the PS and PLLA phases located at the interface of the co-continuous EPDM and PCL phases. When the PS-b-PLLA copolymer is added, sub-micrometric PLLA droplets are encapsulated within the PS continuous layer phase. In comparison, both the PS and PLLA phases compete for the encapsulation process when the PS-b-PMMA is used, indicating that the microstructure of the PLLA phase can be fine-tuned with an adequate choice of interfacial modifier. These effects were investigated by analyzing the microstructure of ternary high-density polyethylene (HDPE)/PS/PMMA 80/10/10%vol. blends displaying PS/PMMA shell/core composite droplets in a HDPE matrix. An inversion of the shell/core structure is observed when the PS-b-PLLA copolymer is used to compatibilize the PS/PMMA interface, whereas no such restructuring occurs with the PS-b-PMMA. These effects are explained by the activity and swelling powers of the copolymer brushes. For the EPDM/PCL/PS/PLLA quaternary systems modified with the PS-b-PMMA, the PLLA homopolymer phase significantly penetrates and swells the PMMA blocks due to their mutual high affinity, as compared to the classical like-prefers-like compatibilization approach. The swelling of the blocks will tend to bend the interface toward the PS phase in order to minimize the lateral compression of the PMMA blocks. A similar effect explains the reversal of the PS/PMMA shell/core structure in the HDPE/PS/PMMA ternary system. This level of control ultimately leads to quite significant differences in microstructures and surface textures for the PLLA scaffolds.  相似文献   

8.
The effects of ultrasonic oscillations on the rheological behavior, mechanical properties, and morphology of high‐density polyethylene (HDPE)/polystyrene (PS) blends were studied. The experimental results show that the die pressure and apparent viscosity of HDPE/PS blends are remarkably reduced in the presence of ultrasonic oscillations and that mechanical properties of the blends are improved. The particle size of the dispersed phase in HDPE/PS blends becomes smaller, its distribution becomes narrower, and the interfacial interaction of the blends becomes stronger if the blends are extruded in the presence of ultrasonic oscillations. Ultraviolet spectra and Soxhlet extraction results show the formation of a polyethylene‐PS copolymer during extrusion in the presence of ultrasonic oscillations, which improves the compatibility of HDPE/PS blends. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 23–32, 2002  相似文献   

9.
In this study, the poly(methyl methacrylate/polystyrene (PMMA/PS) core‐shell composite latex was synthesized by the method of soapless seeded emulsion polymerization. The morphology of the PMMA/PS composite latex was core‐shell structure, with PMMA as the core and PS as the shell. The core‐shell morphology of the composite polymer latex was found to be thermally unstable. Under the effect of thermal annealing, the PS shell region first dispersed into the PMMA core region, and later separated out to the outside of the PMMA core region. This was explained on the basis of lowing interfacial tension between the PMMA and PS phases owing to the interpenetration layer. The interpenetration layer, which was located at the interface of the core and shell region, contained graft copolymer and entangled polymer chains. Both the graft copolymer and entangled polymer chains had the ability to lower the interfacial tension between the PMMA and PS phases. Also, the effect of thermal annealing on the morphology of commercial polymer/composite latex polymer blends was examined. The result showed that the core‐shell composite latex had the ability to enhance the compatibility of the components of polymer blends. The compatibilizing ability of the core‐shell composite latex was better than that of a random copolymer. Moreover, the effect of the amount of core‐shell composite latex on the morphology of the polymer blend was investigated. The polymer blends, which contained composite latex above 50% wt, showed the morphology of a double sea‐island structure. In addition, the composite latex was completely dissolved in solvent to destroy the core‐shell structure and release the entangled polymer chains, and then dried to form the entangled free composite polymer. The entangled free composite polymer had the ability to enhance the compatibility of the components of the polymer blend as usual. The weight ratio 3/7 commercial polymer/entangled free composite polymer blend showed the morphology of the phase inversion structure. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 312–321, 2003  相似文献   

10.
The formation of phase morphology of injection molded HDPE/EVA blends, under the effect of shear stress, has been investigated in detail. The shear stress was induced by dynamic packing injection molding, by which a specimen is forced to move repeatedly in the model by two pistons that move reversibly with the same frequency during cooling. Two kinds of EVA with VA content 16 wt% (16EVA) and 33 wt% (33EVA) were used to investigate the effect of interfacial tension. The phase morphology was viewed both parallel and perpendicular to the shear flow direction, so one can get an overall three-dimensional phase morphology. Low shear stress provided by the pistons has a substantial effect on the phase morphology along the flow direction but is insignificant in the direction perpendicular to the flow direction. Generally, a much elongated and layer-like structure is formed along the flow direction, and spherical droplet-like morphology is formed perpendicular to the flow direction, and the degree of deformation of rubber particles also depends upon their size and elasticity as well as on the interfacial properties between matrix and dispersed phase. For static samples of HDPE/16EVA blends (without shearing), only droplet morphology is formed as 16EVA content increases from10 to 40 wt%. However, under the effect of shear stress (dynamic samples), both droplet and cylinder morphologies can be formed depending on the volume ratio. For static samples of HDPE/33EVA blends, not only droplet, but also cylinder and co-continuous morphology (perpendicular to flow direction) can be formed depending on the volume ratio. For dynamic samples of HDPE/33EVA blends, droplet, cylinder and co-continuous network (co-continuous in both parallel and perpendicular to flow direction) can be formed under the effect of shear stress. The formation of phase morphology is discussed based on interfacial interaction, viscosity ratio, shear stress, and phase inversion.  相似文献   

11.
An in situ Neumann triangle-focused ion beam-atomic force microscopy (NT-FIB-AFM) method has been used to measure modified PS/HDPE interfacial tensions in ternary PS/PP/HDPE blends prepared by melt mixing and demonstrating partial wetting. The ternary blend was modified with SEB, SB and SEBS copolymers. Results related to the position of the PS droplet at the interface show that a symmetrical diblock copolymer is somewhat more efficient in decreasing the interfacial tension compared to an asymmetrical one of similar molecular weight, while the SEBS triblock copolymer appears to have no effect at all. Using the NT-FIB-AFM method, the lowest modified PS/HDPE interfacial tension is 3.0 ± 0.4 mN/m for the symmetric diblock, compared to 4.2 ± 0.6 mN/m (N = 34) for the unmodified interface. This corresponds to an apparent areal density in SEB copolymer equal to 0.16 ± 0.03 molecules/nm2, which is near reported saturation values. By varying the concentration of the copolymer, an emulsification curve reporting the value of the PS/HDPE modified interfacial tension as a function of the apparent areal density of the copolymer at the PS/HDPE interface has been obtained. The interfacial tension values obtained by the NT-FIB-AFM approach are significantly higher than the 0.5 ± 0.2 mN/m (N = 3) result obtained by using the classical breaking thread method with the same materials. This discrepancy does not appear to be due to a poor migration of the copolymer to the PS/HDPE interface, but could instead be attributed to the interfacial elasticity of the compatibilized interface, a phenomena that has not been accounted for so far in experimental studies on the morphology of compatibilized multicomponent polymer blends.  相似文献   

12.
Summary Rheological characteristics and morphology of low-density polyethylene (LDPE) /ethylene vinyl acetate copolymer (EVA) and high-density polyethylene (HDPE)/EVA blends were compared. Morphological examinations clearly reveal a two-phase morphology in which the LDPE/EVA blends have smaller dispersed domain size than HDPE/EVA Furthermore, LDPE/EVA shows a finely interconnected morphology at 50wt% of EVA while HDPE/EVA exhibits a coarse co-continuous morphology at the same composition. The morphological observations can be attributed to the lower viscosity ratio and lower interfacial tension in the LDPE/EVA system. The Palierne model also successfully fits to the experimental data giving higher values for interfacial tension of HDPE/EVA system as compared to LDPE/EVA.  相似文献   

13.
The morphology and rheology of ternary isotactic polypropylene (PP)/polyamide-6 (PA-6)/glass blends is investigated and contrasted with the behavior of two-component (binary) PP/PA-6 blends. Injection molded samples of binary blends exhibit an interlayer slip morphology for both PP and PA-6 as the matrix and the blend shear viscosity is lower than expected from a rule of mixtures. The morphology of ternary blends is dependent on the choice of the matrix phase. In ternary blends with a PA-6 matrix, the PP domains and glass fibers are separately dispersed within the matrix. In ternary blends with a PP matrix, the PA-6 is mainly found surrounding (encapsulating) the glass fibers, and the extent of the interlayer slip morphology is reduced. Variations in glass surface treatment, blending time, and order of addition did not affect the rapid encapsulation of glass by the PA-6. A reduction in blending temperature, below the peak PA-6 melting temperature, hinders encapsulation.  相似文献   

14.
In this study, influences of both component ratio of minor phases and charge sequence on the morphology and mechanical performance in typical ternary blends, polypropylene (PP)/polystyrene (PS)/polyamide-6 (PA6), have been studied. Reactive compatibilization of the blends has been carried out using multi-monomer melt grafted PP with anhydride groups and styrene segments. For uncompatibilized blends, scanning electron microscope (SEM) and selective solvent extraction showed that the blends presented a core–shell morphology with PS as shell and PA6 as core in the PP matrix, in spite of the component ratio and charge sequence. The shell thickened and droplet size decreased with increasing the PS/PA6 component ratio. While for compatibilized blends, the addition of compatibilizers resulted in a significant reduction of the dispersed droplet size and the phase structure of the dispersed phases was greatly dependent on the charge sequence. When the blending of PA6, g-PP, and PP are preceded, the encapsulation structure reversed into the structure of PS phase encapsulated by PA6 phase, which led to better tensile and flexural strength of the blends.  相似文献   

15.
Sepehr Ravati 《Polymer》2010,51(20):4547-1709
For the most part, ternary polymer blends demonstrate complete wetting behavior. Conceptually, this is the state where one of the components will always tend to completely separate the other two and from a thermodynamic viewpoint is described as the case where two of the three possible binary spreading coefficients are negative and the other is positive, as defined by Harkins spreading theory. This work examines the complete range of morphological states possible for such a system over the entire ternary composition diagram as prepared by melt mixing. A ternary polymer blend comprised of high-density polyethylene (HDPE), polystyrene (PS), and poly(methyl methacrylate) (PMMA) is selected as a model system demonstrating complete wetting and four sub-categories of morphologies can be identified including: a) matrix/core-shell dispersed phase; b) tri-continuous; c) matrix/two separate dispersed phases, and d) bi-continuous/dispersed phase morphologies. Electron microscopy as well as a technique based on the combination of focused ion beam irradiation and atomic force microscopy are used to clearly illustrate and identify the various phases. Solvent extraction/gravimetry is used to examine the extent of continuity of the systems so as to effectively identify regions of high continuity. Triangular compositional diagrams are used to distinguish these various morphological regions and the results are interpreted in light of the interfacial tension of the various binary combinations and their subsequent spreading coefficients. The effect of the molecular weight and of viscosity ratio on the phase size of the various structures is also considered.  相似文献   

16.
Immiscible polymer blends are interesting multiphase host systems for fillers. Such systems exhibit, within a certain composition limits, either a separate dispersion of the two minor phases or a dispersion of encapsulated filler particles within the minor polymer phase. Both thermodynamic (e.g. interfacial tension) and kinetic (e.g. relative viscosity) considerations determine the morphology developed during the blending process. The effect of interfacial characteristics on the structure‐property relationships of ternary polymer alloys and blends comprising polypropylene (PP), ethylene‐vinyl alcohol copolymer (EVOH) and glass beads (GB), or fibers (GF), was investigated. The system studied was based on a binary PP/EVOH immiscible blend, representing a blend of a semi‐crystalline apolar polymer with a semicrystalline highly polar copolymer. Modification of the interfacial properties was obtained through using silane coupling agents for the EVOH/glass interface and compatibilization using a maleic anhydride grafted PP (MA‐g‐PP) for the PP/EVOH interface. The compatibilizer was added in a procedure aimed to preserves the encapsulated EVOH/glass structure. Blends were prepared by melt extrusion compounding and specimens by injection molding. The morphology was characterized using scanning electron microscopy (SEM) and high resolution SEM (HRSEM), the shear viscosity by capillary rheometry and the thermal behavior using differential scanning calorimetry (DSC). The system studied consisted of filler particles encapsulated by EVOH, with some of the minor EVOH component separately dispersed within the PP matrix. Modification of the interfaces resulted in unique morphologies. The aminosilane glass surface treatment enhanced the encapsulation in the ternary [PP/EVOH]GB blends, resulting in an encapsulated morphology with no separtely dispersed EVOH particles. The addition of a MA‐g‐PP compatibilizer preserves the encapsulated morphology in the ternary blends with some finely dispersed EVOH particles and enhanced PP/EVOH interphase interactions. The viscosity of the binary and ternary blends was closely related to the blend's morphology and the level of shear rate. The treated glass surfaces showed increased viscosity compared to the cleaned glass surfaces in both GB and GF containing ternary blends. Both EVOH and glass serve as nucleating agents for the PP matrix, affecting its crystallization process but not its crystalline structure. The aminosilane glass surface treatment completely inhibited the EVOH crystallization process in the ternary blend. In summary, the structure of the multicomponent blends studied has a significant effect on their behavior as depicted by the rheological and thermal behavior. The structure‐performance relationships in the three‐component blends can be controlled and varied.  相似文献   

17.
尚吉焕 《塑料工业》2012,40(5):100-104,114
通过密炼得到高密度聚乙烯(HDPE)、聚苯乙烯(PS)和聚甲基丙烯酸甲酯(PMMA)三元体系核壳结构。用扫描电镜(SEM)考察了组分配比、增容剂氢化苯乙烯-丁二烯-苯乙烯弹性体(SEBS)和退火对体系核壳形态的影响。结果表明,组分用量最大的HDPE总是形成基体相,而PS形成壳,PMMA形成核;核壳粒子的尺寸和内部结构随组分用量而变化,随着分散相用量(PS+PMMA)增加,核壳粒子间碰撞融合机会增多,因此核壳粒子尺寸变大,同时核壳粒子由一核一壳逐渐转变为多核一壳结构;而随着核壳粒子中PS用量增加,PMMA核的尺寸显著减小;增容剂SEBS的加入,抑制了共混中核壳粒子间的融合,导致核和壳的尺寸减小;200℃下退火处理使分散相向体系自由能更小的一核一壳结构转变。  相似文献   

18.
In the present work, the rheology, morphology, and interfacial interaction of polyethylene/polyhexane-1 (PE/PH-1) blends with various polyethylene types with different molecular architectures are investigated. The scanning electron microscopy (SEM) images showed a droplet-matrix morphology in all percentage of PH-1 for all blend systems and the size of droplets increased proportionally with PH-1 content. The minimum droplet size is observed for high-density polyethylene (HDPE)/PH-1 blends. The homogeneity of the blends at various compositions is assessed by using viscoelastic parameters determined by dynamic oscillation rheometry in the linear viscoelastic region. A distinct Newtonian plateau at low frequencies is perceived and the variations of complex viscosity (η*) versus angular frequency (ω) for all blend systems are in good agreement with Carreau-Yasuda model. The complex viscosity of samples at various percentages of PH-1 showed the negative deviation from mixing rule in low and high frequencies for all blend systems. The Cole-Cole plots deviated from semi-circular shape at higher percentages of PH-1 than 10wt% in the blends of low-density polyethylene (LDPE)/PH-1 and linear low-density polyethylene (LLDPE)/PH-1. By using emulsion theoretical model, the lowest interfacial tension is found for HDPE/PH-1 blends comparing with its counterparts based on LDPE and LLDPE and the best fitting with experimental data was observed for this blends system.  相似文献   

19.
Rheological properties of the polystyrene (PS) and poly(methyl methacrylate) (PMMA) blends were studied by Advanced Rheometric Expansion System (ARES). Storage modulus and loss modulus of the PS and PMMA blends were measured, and the interfacial tension of the PS and PMMA blends were obtained with various emulsion models by using the storage modulus and loss modulus of the blends. The value of interfacial tension estimated from the Palierne emulsion model was found to be 2.0 mN/m. Also, the interfacial tension between PS and PMMA was calculated by a theoretical model. The values of interfacial tension of the PS and PMMA blends obtained by the experiment and theoretical model were found to be in good agreement.  相似文献   

20.
Processing and compatibilization effects on the phase morphology and the tensile behavior of blends of polystyrene and high-density polyethylene (PS/HDPE) were investigated. As predicted by theory, high shear rates encountered during extrusion blending led to efficient minor phase emulsification in immiscible PS/HDPE blends for which the viscosity ratio approaches unity. Consequently, the emulsifying effect of a styrene/ethylene-butylene/styrene (SEBS) compatibilizer was found to be negligible. In the subsequent molding process, disintegration, shape relaxation and coarsening of the minor phase domains were found to be responsible for the morphological evolution. In the compression molding process, morphological observations showed that the rate of minor phase coarsening followed the predictions of the Ostwald ripening theory, in agreement with the rheological analysis. In the injection molding process, minor phase coarsening was attributed to shear coalescence. Tensile tests performed on compression molded and injection molded blends showed that the mechanical behavior of PS/HDPE blends depend strongly upon the matrix orientation as well as the dispersed phase morphology and orientation. In both postforming operations, compatibilization effects on the morphological stability and the tensile behavior of PS/HDPE blends were found to be dependent upon the composition and the rheological behavior of the blend. Evidence of adhesion between the PS and HDPE phases was observed in the presence of SEBS in HDPE-rich blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号