首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 333 毫秒
1.
By using a polydimethylsiloxane (PDMS) macro-chain transfer agent with trithiocarbonate groups at both ends, fluorosilicone block copolymers containing polyhedral oligomeric silsesquioxane (POSS) were synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization. Acryloisobutyl POSS (APOSS) and 2,2,3,4,4,4-hexafluorobutyl acrylate (HFBA) were sequentially introduced into the copolymers. The obtained triblock copolymers PDMS-b-(PAPOSS)2 exhibited a low polydispersity index (PDI) of less than 1.42 in the first 6 h of polymerization, but the PDI value became broader later because of the steric hindrance of the POSS macromer. The POSS-containing fluorosilicone pentablock copolymers with a PDI of about 2.0, which were prepared by the further RAFT polymerization of HFBA, showed clear microphase separation. The average roughness values of the copolymer films were enhanced by introducing POSS, and a certain POSS content led to a significant decrease of the receding contact angle. Measurements of water contact angles and ice shear strengths demonstrated that the non-wetting properties of the copolymer films were improved by the incorporation of both POSS and fluorine blocks. The block copolymers combine the advantages of POSS, PDMS and fluoropolymers, and can be potentially applied as non-wetting coating materials for anti-icing or anti-frosting.  相似文献   

2.
Yu Zhu  Yuqi Zhou  Zhen Chen  Ran Lin  Xiaogong Wang 《Polymer》2012,53(16):3566-3576
A series of diblock copolymers bearing strong push–pull azo chromophores and cholesteryl groups on the respective blocks was synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. The liquid crystal phase structure, microphase-separated morphology, and photoresponsive properties of the block copolymers were investigated by using DSC, POM, AFM, XRD and laser irradiation. The results show that the cholesteryl block (PChEMA) forms smectic-A mesophase and the morphology depends on the length of the azo block (PAzoCN). When the azo block is short, such as PChEMA50-b-PAzoCN7, no microphase separation can be identified. For PChEMA50-b-PAzoCN28, PAzoCN appears as the hexagonal-packed nanocylinders embedded in the PChEMA matrix. When the azo block length further increases, the block copolymer PChEMA50-b-PAzoCN73 forms microphase-separated lamellae. The microphase separation shows no obvious restraint on the photoinduced orientation of the azo chromophores, but micron-scale mass transport of the photoresponsive PAzoCN block is inhibited by the phase confinement.  相似文献   

3.
Blending of styrene-b-(ethylene-co-1-butene)-b-styrene (SEBS) triblock copolymers with syndiotactic polystyrene (PSsyn) has been performed in a Brabender mixer above the higher glass transition temperature of the triblock copolymer but below the PSsyn melting point. The large excess of the triblock copolymer over the homopolymer as well as the significant amount of plasticized amorphous PSsyn phase allowed the easy processing under the used temperature conditions with good interface compatibility. The consequent interfacial adhesion between the amorphous PS phase and the unmelted PSsyn crystallites affects both the final morphology of the blend as well as its dynamic behavior. Indeed, such solid particles act as reinforcing point of the overall blend structure, as evidenced by scanning electron microscopy. Moreover, they contribute to a Tg increase in the order of 20 °C with respect to pure SEBS and to an appreciable conservation of mechanical properties at temperatures higher than the Tg of the PS blocks of SEBS. The mechanical and thermal behavior of the synthesized blends has been studied and tentatively correlated to the molecular weight ratio between PSsyn and the PS blocks of SEBS.  相似文献   

4.
Investigation of the Tu (>Tg) relaxation in amorphous polymers of styrene by the technique of torsional braid analysis is reviewed. For the most part the relaxation behaves like the glass transition (Tg) in its dependence on molecular weight, on average molecular weight in binary polystyrene blends, and on composition in a polystyrene homogeneously plasticized throughout the range of composition. Diblock and triblock copolymers also display a T > Tg relaxation above the Tg, of the polystyrene phase. Two results in particular suggest that the Tu relaxation is molecularly based. (1) The Tu temperature is determined by the number average molecular weight for binary blends of polystyrene when both components have molecular weights below Mc. (the critical molecular weight for chain entanglements). (2) Homopolymers, and diblock and triblock copolymers of styrene, have a T > Tg relaxation at approximately the same temperature when the molecular weight of the styrene block is equal to that of the homopolymer.  相似文献   

5.
This study describes the synthesis of amphiphilic ABC‐triblock copolymers comprising a central pseudopoly(4‐hydroxy‐L ‐proline) segment and terminal hydrophilic poly(ethylene glycol)methyl ether as well as hydrophobic poly(ε‐caprolactone) blocks. Differential scanning calorimetry, 1H‐NMR spectroscopy, and gel permeation chromatography are used to characterize the copolymers. The thermal properties (Tg and Tms) of the triblock copolymers depend on the composition of polymers. Larger amounts of ε‐CL incorporated into the macromolecular backbone increased Tg and Tms. Fluorescence spectroscopy, transmission electron microscopy, and dynamic light scattering are utilized to investigate their micellar characteristics in the aqueous phase. Observations showed a higher critical micelle concentration with higher hydrophilic components in the copolymers. The micelle exhibited a core‐shell‐corona and/or vesicle shape, and the average size was less than 300 nm. Drug entrapment efficiency and drug loading of micelles depending on the composition of block polymers are also described. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Of the many nanomaterials available today, polyhedral oligomeric silsesquioxanes (POSS) are in a class of their own as they hold the capability to combine unique reactive inorganic–organic hybrid chemical compositions with nano-sized dimensionally stable cage structures. Depending on the structure and reactivity of their vertex groups, POSS may be blended in a polymer matrix, grafted as side chains, lie on the main macromolecular contour or even act as large, multifunctional chemical crosslinks. POSS is known to influence polymer segmental dynamics with several accelerating or decelerating mechanisms, that often lead to a significant decrease or increase of the glass transition temperature (Tg), respectively. This review explores these mechanisms with respect to the chemical nature of the organic substituents and the resulting particle–polymer interactions; the synthesis route, the chain topology, and the degree of dispersion. Tg vs content data are compiled from the primary literature in a series of comparative graphs. It will be shown that the dependence of Tg on the composition of the POSS nanomaterials can be often discussed and considered in terms similar to those used for polymer blends and copolymers.  相似文献   

7.
New liquid-crystalline symmetric triblock copolymers ABA, in which central LC block B is poly(p-(6-acryloyloxycaproyloxyphenyl)-p-methoxybenzoate and blocks A are amorphous blocks of polyvinylpyridine, whose units are able to form various types of noncovalent chemical bonds, are synthesized. The phase behavior of the triblock copolymers is studied, and the type of their microphase-separated structure is ascertained. It is shown that the composition of the triblock copolymers affects the morphology of their thin films.  相似文献   

8.
A series of poly(hydroxystyrene-co-vinylpyrrolidone-co-isobutylstyryl polyhedral oligosilsesquioxanes) (PHS-PVP-POSS) hybrid polymers with various POSS contents was prepared by free radical copolymerization of acetoxystyrene, vinylpyrrolidone with styrylisobutylpolyhedral oligosilsesquioxanes (POSS), followed by selective removal of the acetyl protective group. The POSS content of a hybrid polymer can be effectively controlled by varying the feed ratios of reactants. The Tg of the POSS hybrid increases with the POSS content of PHS-PVP-POSS hybrids. The mechanism of Tg enhancement in these PHS-PVP-POSS hybrids was investigated using DSC, FTIR and GPC. The formation of the physically cross-linked POSS in these hybrid polymers trends to restrict polymer chain motion and results in significant Tg increase.  相似文献   

9.
The effect of polydispersity on dilute solution properties and microphase separation of polydisperse high-molecular-weight (Mw > 105 g mol−1) polystyrene-block-poly(styrene-co-acrylonitrile) diblock copolymers, PS-block-P(S-co-AN), was studied in this work. For experiments, a series of diblock copolymers with variable weight fractions of acrylonitrile units (wAN = 0.08-0.29) and length of block P(S-co-AN) was synthesized using nitroxide-mediated radical polymerization (NMP) technique, namely, by chain extension of nitroxide-terminated polystyrene (PS-TEMPO). According to light scattering and viscometry measurements in dilute tetrahydrofuran (THF) solutions the studied diblock copolymers assumed random coil conformation with the values of characteristic structure factor Rg/Rh = 1.50-1.76. It was found that polydisperse diblock copolymers being in strong segregation limit (SSL) self-assembled into microphase-separated ordered morphologies at ordinary temperature. The long periods of lamellar microdomains were larger compared to theoretical predictions for hypothetical monodisperse diblock copolymers. It was demonstrated by means of SAXS and TEM that a transition from a lamellar (LAM) to irregular face-centered-cubic (FCC) morphology occurred with increasing volume fraction of P(S-co-AN) block.  相似文献   

10.
A series of composite electrolytes (CEs) consisting of organic/inorganic hybrid star-shaped polymer (SPP13), plasticizer (PEG-functionalized POSS derivatives), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) were prepared to investigate the effects of the composite compositions and PEG chain length of PEs on the properties of CEs. SPP13 was prepared via ATRP from poly(ethylene glycol) methyl ether methacrylate (PEGMA) and methacryl-cyclohexyl-POSS (MA-POSS) using an octafunctional initiator, and the PEG-functionalized POSS derivatives were synthesized by the hydrosilylation reaction of octakis(dimethylsilyloxy)silsesquioxane (OHPS) and allyl-PEG. The CEs were found to be dimensionally-stable enough to separate the electrodes in batteries, but they still possessed high mobility of ion-conducting P(PEGMA) segments, as estimated by the low glass transition temperatures (Tg). The CEs having solid-state show quite high ionic conductivity (4.5 × 10−5 S cm−1 at 30 °C) which is about three times of magnitude larger than that of the matrix polymer (SPP13) electrolyte (1.5 × 10−5 S cm−1 at 30 °C). The CEs were electrochemically stable up to +4.2 V without the decomposition of electrolytes. An all-solid-state lithium battery prepared from the CEs exhibited larger discharge capacity than that prepared from the SPP13 electrolyte at 60 °C.  相似文献   

11.
In this work, we investigated the effect of formation mechanisms of nanophases on the morphologies and thermomechanical properties of the nanostructured thermosets containing block copolymers. Toward this end, the nanostructured thermosets involving epoxy and block copolymers were prepared via self-assembly and reaction-induced microphase separation approaches, respectively. Two structurally similar triblock copolymers, poly(ε-caprolactone)-block-poly(butadiene-co-styrene)-block-poly(ε-caprolactone) (PCL-b-PBS-b-PCL) and poly(ε-caprolactone)-block-poly(ethylene-co-ethylethylene-co-styrene)-block-poly(ε-caprolactone) (PCL-b-PEEES-b-PCL) were synthesized via the ring-opening polymerization of ε-caprolactone (CL) with α,ω-dihydroxyl-terminated poly(butadiene-co-styrene) (HO-PBS-OH) and α,ω-dihydroxyl-terminated poly(ethylene-co-ethylethylene-co-styrene) (i.e., HO-PEEES-OH) as the macromolecular initiators, respectively; the latter was obtained via the hydrogenation reduction of the former. Both the triblock copolymers had the same architecture, the identical composition and close molecular weights. In spite of the structural resemblance of both the triblock copolymers, the formation mechanisms of the nanophases in the thermosets were quite different. It was found that the formation of nanophases in the thermosets containing PCL-b-PBS-b-PCL followed a reaction-induced microphase separation mechanism whereas that in the thermosets containing PCL-b-PEEES-b-PCL was in a self-assembly manner. The different formation mechanisms of nanophases resulted in the quite different morphologies, glass transition temperatures (Tg's) and fracture toughness of the nanostructured thermosets.  相似文献   

12.
An earlier paper proposed a theoretical model for the thermodynamics of microphase separation in a plasticized triblock copolymer. Data on laser light transmission through plasticized films and on dynamic viscosity: of these films are presented in support of model predictions. Two styrenebutadiene-styrene copolymers were tested: Kraton 1101 with block weights (12.5-75-12.5) × 103 and TR-41-1467 with weights (9.6-47.5-9.4) × 103 using the solvent dipentene (p-mentha 1, 8 diene), which is favorable for both blocks. The role of such solvents is to depress the temperature of microphase separation, Ts. Optical and rheological measurements of Ts agreed with each other arid, in most cases, with the theory; discrepancies with theory were noted only when Ts was less than Ts for polystyrene. These data along with electron microscopy also support the prediction that the favored morphology for these systems is a mixture of planar and inverted (middle-block) cylinders and spheres.  相似文献   

13.
BACKGROUND: Organic–inorganic nanocomposites were prepared by copolymerization of various monomers and polyhedral oligomeric silsesquioxane (POSS) derivatives. Preliminary results showed that styrene/styryl–POSS copolymers could be obtained using CpTiCl3 catalyst. In the work reported here, the copolymerization of styrene and styryl‐substituted POSS was studied in detail for a more effective catalyst, Cp*TiCl3. RESULTS: The glass transition temperature (Tg) of the copolymers prepared increased with increasing POSS content. The degradation temperature (Td) of the copolymers was 60 °C higher than that of syndiotactic polystyrene under nitrogen. Although the thermal properties were improved by incorporation of POSS, the catalytic activity decreased with POSS content. The racemic triad and syndiotactic index of the copolymers decreased with increasing POSS content. Gel permeation chromatograms of the copolymers exhibited multimodal distribution due to the presence of multi‐active centres, which were formed by interaction of Ti with the POSS siloxane linkage. CONCLUSION: With the incorporation of POSS, the thermal properties of polystyrene were improved. The styrene/styryl–POSS copolymers are formed through the various active sites arising from the interactions of Ti with POSS. Copyright © 2008 Society of Chemical Industry  相似文献   

14.
Imidazolium ionene segmented block copolymers were synthesized from 1,1′-(1,4-butanediyl)bis(imidazole) and 1,12-dibromododecane hard segments and 2000 g/mol PTMO dibromide soft segments. The polymeric structures were confirmed using 1H NMR spectroscopy, and resonances associated with methylene spacers from 1,12-dibromododecane became more apparent as the hard segment content increased. TGA revealed thermal stabilities ≥250 °C for all imidazolium ionene segmented block copolymers. These ionene segmented block copolymers containing imidazolium cations showed evidence of microphase separation when the hard segment was 6-38 wt%. The thermal transitions found by DSC and DMA analysis found that the Tg and Tm of the PTMO segments were comparable to PTMO polymers, namely approximately −80 °C and 22 °C, respectively. In the absence of PTMO soft segments the Tg increased to 27 °C The crystallinity of the PTMO segments was further evidence of microphase separation and was particularly evident at 6, 9 and 20 wt% hard segment, as indicated in X-ray scattering. The periodicity of the microphase separation was well-defined at 20 and 38 wt% hard segment and found to be approximately 10.5 and 13.0 nm, respectively, for these ionenes wherein the PTMO soft segment is 2000 g/mol. Finally, the 38 and 100 wt% hard segment ionenes exhibited scattering from correlations within the hard segment on a length scale of approximately 2-2.3 nm. These new materials present structure on a variety of length scales and thereby provide various routes to controlling mechanical and transport properties.  相似文献   

15.
Kerh Li Liu  Suat Hong Goh 《Polymer》2008,49(3):732-741
Well-defined biodegradable amphiphilic triblock copolymers consisting of atactic poly[(R,S)-3-hydroxybutyrate] (PHB) and poly(ethylene glycol) (PEG) as the side hydrophobic block and middle hydrophilic block were synthesized via ring opening polymerization of (R,S)-β-butyrolactone from PEG macroinitiators and characterized using NMR, GPC, FT-IR, XRD, DSC and TG analyses. The controlled synthesis was made possible by the facile synthesis of pure PEG macroinitiators through a TEMPO-mediated oxidation. Constituting 40-70 wt% of the copolymer content, PHB blocks grown were amorphous while PEG formed crystalline phase when segment was sufficiently long. While hindering PEG crystallization, atactic PHB mixed well with amorphous PEG to give single Tg in all the copolymers. The copolymers exhibited two-step thermal degradation profile starting with PHB degradation from 210 to 300 °C, then PEG from 350 to 450 °C.  相似文献   

16.
This study aims to investigate the effects of methacrylate-functionalized polyhedral oligomeric silsesquioxane (MA-POSS) on polyolefin-based adhesives. The so called adhesive was synthesized by the cooligomerization of 1-decene/9-decene-1-ol monomers using a Ti amine bis-phenolate catalyst, [Ti{2,2′-(OC6H2-4,6-tBu2)2NHC2H4NH(OiPr)2], which was subsequentlyacrylated via a simple reaction with methacryloyl chloride. Different weight fractions of MA-POSS nanoparticles were solution blended with synthesized adhesive and undergone curing reaction with blue light. Observation of a unique tan δ peak in dynamic mechanical thermal analysis (DMTA) curve was clear evidence that two employed moieties were miscible and only one hybrid polymeric phase was created. Most noticeably, significant increase in mechanical parameters was detected in the lower inclusion compositions, 0.2-1 wt% of MA-POSS, where flexural strength and flexural modulus were increased up to 99 and 110%, respectively. Furthermore, thermal stability of the synthesized nanocomposite enhanced dramatically by increasing MA-POSS weight fraction. Influence of employed nanoparticles on adhesion properties of synthesized nanocomposites was evaluated with tensile shear bond strength and pull off analysis. According to the adhesion results, the MA-POSS causes an adhesion promotion on the fabricated adhesive/POSS nanocomposites.  相似文献   

17.
Poly(vinyl pyrrolidone‐co‐isobutyl styryl polyhedral oligomeric silsesquioxane)s (PVP–POSS) were synthesized by one‐step polymerization and characterized using FTIR, high‐resolution 1H‐NMR, solid‐state 13C‐NMR, 29Si‐NMR, GPC, and DSC. The POSS content can be controlled by varying the POSS feed ratio. The Tg of the PVP–POSS hybrid is influenced by three main factors: (1) a diluent role of the POSS in reducing the self‐association of the PVP; (2) a strong interaction between the POSS siloxane and the PVP carbonyl, and (3) physical aggregation of nanosized POSS. At a relatively low POSS content, the role as diluent dominates, resulting in a decrease in Tg. At a relatively high POSS content, the last two factors dominate and result in Tg increase of the PVP–POSS hybrid. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2208–2215, 2004  相似文献   

18.
We investigate the miscibility of acrylic polyhedral oligomeric silsesquioxanes (POSS) [characteristic size d≈2 nm] and poly(methyl methacrylate)(PMMA) in order to determine the effect of well-dispersed POSS nanoparticles on the thermomechanical properties of PMMA. Two different acrylic POSS species (unmodified and hydrogenated) were blended separately with PMMA at volume fractions up to ?=0.30. Both POSS species have a plasticizing effect on PMMA by lowering the glass transition temperature Tg and decreasing the melt-state linear viscoelastic moduli measured in small amplitude oscillatory shear flow. The unmodified acrylic-POSS has better miscibility with PMMA than the hydrogenated form, approaching complete miscibility for loadings ?<0.10. At a loading ?=0.05, the unmodified acrylic POSS induces a 4.9 °C decrease in the Tg of PMMA, far less than the 17.4 °C decrease in the glass transition temperature observed in a blend of 5 vol% dioctyl phthalate (DOP) in PMMA; however, the decrease in the glass transition temperature per added plasticizer molecule is nearly the same in the unmodified acrylic-POSS-PMMA blend compared with the DOP-PMMA blend. Time-temperature superposition (TTS) was applied successfully to the storage and loss moduli data and the resulting shift factors were correlated with a significant increase in free volume of the blends. The fractional free volume f0=0.046 for PMMA at T0=170 °C while for a blend of 5 vol% unmodified acrylic-POSS in PMMA f0=0.057, which corresponds to an addition of 0.47 nm3 per added POSS molecule at ?=0.05. The degree of dispersion was characterized using both wide-angle X-ray diffraction (WAXD) and dynamic mechanical analysis (DMA). Diffraction patterns for both blend systems show clear evidence of phase separation at ?=0.20 and higher, but no significant phase separation is evident at ?=0.10 and lower. The storage modulus measured in DMA indicates appreciable phase separation for unmodified acrylic POSS loadings ?≥0.10, while no evidence of phase separation is present in the ?=0.05 blend in DMA.  相似文献   

19.
This paper describes the synthesis of a series of ABA‐type triblock copolymers of trimethylene carbonate and ?‐caprolactone with various molar ratios and analyses the thermal and mechanical properties of the resulting copolymers. The structures of the triblock copolymers were characterized by 1H and 13C nuclear magnetic resonance spectroscopy, FT‐IR spectroscopy and gel permeation chromatography. Results obtained from the various characterization methods proves the successful synthesis of block copolymers of trimethylene carbonate and ?‐caprolactone. The thermal properties of the block copolymers were investigated by differential scanning calorimetry. The Tm and ΔHm values of the copolymers decrease with increasing content of trimethylene carbonate units. Two Tgs were found in the copolymers. Furthermore, both of the Tg values increased with increasing content of trimethylene carbonate units. The mechanical properties of the resulting copolymers were studied by using a tensile tester. The results indicated that the mechanical properties of the block copolymers are related to the molar ratio of trimethylene carbonate and ?‐caprolactone in the copolymers, as well as the molecular weights of the resulting copolymers. The block copolymer with a molar composition of 50/50 possessed the highest tensile stress at maximum and modulus of elasticity. Block copolymers possessing different properties could be obtained by adjusting the copolymer compositions. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
Styrene/4-methylstyrene (S/MS) random and gradient copolymers were synthesized by nitroxide-mediated controlled radical polymerization (NM-CRP) and compared to random copolymers made by conventional free radical polymerization (ConvFRP). The gradient copolymers have molecular weight (MW) values approaching 85,000 g/mol, making these some of the higher MW gradient copolymers reported to date. Due to the proximity of the glass transition temperatures (Tg) of polystyrene (PS) and poly(4-methylstyrene) (PMS), there is no significant difference in Tg between the gradient and random copolymers, with both copolymer types yielding single Tgs that typically increase slightly with increasing MS content. While enthalpy relaxation studies demonstrate similarity in random copolymers made by NM-CRP and ConvFRP, they reveal significant differences between random and gradient copolymers. Gradient copolymers exhibit broad enthalpy recovery peaks, whereas random copolymers exhibit narrower enthalpy recovery peaks. The maxima in the enthalpy recovery peaks are at substantially lower temperature, as much as 17 °C, in the gradient copolymers as compared to random copolymers of equal overall composition. While random and gradient copolymers of a given overall composition exhibit similar enthalpy recovery values at a common physical aging time and quench depth relative to Tg, the major differences in the enthalpy recovery peaks indicate that differences in sequence distribution along the chain length can lead to unusual behavior in gradient copolymers relative to random copolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号