首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Ethylene/ethyl acrylate/carbon monoxide ter polymers (E/ EA/CO) can exhibit a very high degree of miscibility with poly(vinyl chloride) as determined from dynamic mechanical measurements. The blends yield transparent films and show a large amorphous phase which exhibits only one major glass transition. However, some crystallinity can be detected and has been measured by differential, scanning calorimetry. Residual crystallinity is at least partially due to the somewhat non-uniform nature of the terpolymerization. The acrylate monomer exhibits faster polymerization rates than the other two constituents. By contrast, ethylene/ethyl acrylat copolymers are not miscible with poly(vinyl chloride). The addition of carbon monoxide to the termpolymer structure is believed to yield miscibility with poly(vinyl chloride) via specific interaction of the ketone carbonyl of the terpolymer (proton acceptor) and the tertiary hydrogen of poly(vinyl chloride) (proton donor). This specific interaction allows for a broad range of terpolymer compositions which retain miscibility with polyvinyl chloride. Similar results are also observed with ethylene/vinyl acetate/carbon monoxide (E/VA/CO) as well as ethylene/2-ethylhexyl acrylate/carbon monoxide termpojymers. The vinyl acetate terpolymers (and their blends) display a lower degree of crystallinity than the E/EA/ CO. This is consistent with the more uniform nature of the E/VAJCO terpolymerization.  相似文献   

2.
Blends of poly(vinyl chloride) with chlorinated poly(vinyl chloride) (PVC), and blends of different chlorinated poly(vinyl chlorides) (CPVC) provide an opportunity to examine systematically the effect that small changes in chemical structure have on polymer-polymer miscibility. Phase diagrams of PVC/CPVC blends have been determined for CPVC's containing 62 to 38 percent chlorine. The characteristics of binary blends of CPVC's of different chlorine contents have also been examined using differential calorimetry (DSC) and transmission electron microscopy. Their mutual solubility has been found to be very sensitive to their differences in mole percent CCl2 groups and degree of chlorination. In metastable binary blends of CPVC's possessing single glass transition temperatures (Tg) the rate of phase separation, as followed by DSC, was found to be relatively slow at temperatures 45 to 65° above the Tg of the blend.  相似文献   

3.
The miscibility behavior of ternary blends of poly (vinyl phenol) (PVPh)/poly (vinyl pyrrolidone) (PVP)/poly (ethyl methacrylate) (PEMA) was investigated mainly with calorimetry. PVPh is miscible with both PVP and PEMA on the basis of the single Tg observed over the entire composition range. FTIR was used to study the hydrogen bonding interaction between the hydroxyl group of PVPh and the carbonyl group of PVP and PEMA at various compositions. Furthermore, the addition of PVPh is able to enhance the miscibility of the immiscible PVP/PEMA and eventually transforms it into a miscible blend, especially when the ratio between PVP/PEMA is 3:1, probably because of favorable physical interaction. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1205–1213, 2006  相似文献   

4.
Poly(vinyl acetate) and vinyl acetate-ethylene (VAE) copolymers compose one of the more important polymeric materials, widely employed in coating and adhesive applications. A new class of miscible polymer blends involving poly(vinyl acetate) and VAE with styrene-acrylic acid and acrylate-acrylic acid copolymers has been found. Experimental windows of miscibility as a function of the ethylene content for VAE copolymers and the acrylic acid content of the acrylate-acrylic acid copolymers are observed (acrylate = methyl acrylate, ethyl acrylate, n-butyl acrylate, and 2-ethylhexyl acrylate). Employing well-established analog heat of mixing measurements, predicted windows of miscibility were compared with experimental results. Fair qualitative agreement was observed and supported the hypothesis that specific rejection arguments can be employed to explain the observed miscibility. Failure to quantitatively predict miscibility based on the analog heat of mixing measurements may be due to the higher association tendencies of the model compounds relative to acrylic acid units in the high molecular weight polymers. No miscible combinations were found for methyl methacrylate-acrylic acid copolymers or acrylate-methacrylic acid copolymers in admixture with poly(vinyl acetate) or the VAE copolymers, thus indicating the sensitivity of phase behavior to minor structural changes. VAE (30 wt % ethylene) copolymers were also noted to be miscible with several polymers previously noted to be miscible with poly(vinyl acetate), namely, poly(vinylidene fluoride), poly(ethylene oxide), and nitrocellulose. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
The results of a Fourier transform infrared study of poly(vinyl phenol) (PVPh) blends containing a number of chemically and structurally dissimilar polymers are presented. These polymers include the polyesters poly(ε-caprolactone) and poly(?-propiolactone); poly(vinyl alkyl ethers) where the alkyl groups are methyl, ethyl and isobutyl respectively; poly(ethylene oxide) and poly(vinyl pyrrolidone). All of these PVPh blends, with the exception of that containing poly(vinyl isobutyl ether), exhibit infrared spectral features consistent with a significant degree of mixing. Intermolecular hydrogen bonding interactions involving the PVPh hydroxyl group and either the carbonyl or ether oxygen moieties of the other polymers in the blend are identified. The relative strengths of these intermolecular interactions are discussed together with ramifications pertinent to the overall subject of polymer miscibility.  相似文献   

6.
The blend miscibility of poly(vinyl alcohol) and poly(methyl methacrylate) in N,N′‐dimethylformamide solution was investigated by viscosity, density, ultrasonic velocity, refractive index, and UV and fluorescence spectra studies. Differential scanning calorimetry and scanning electron microscopy were used to confirm the blend miscibility in the solid state. Blends were compatible when the concentration of poly(vinyl alcohol) was greater than 60 wt %. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2415–2421, 2006  相似文献   

7.
The enhancement of miscibility at the lower critical solution temperature (LCST) of the blends poly(vinyl chloride)/poly(ethylene-co-vinyl acetate) (PVC/EVA), poly(vinyl chloride)/poly(styrene-co-acrylonitrile) (PVC/SAN) and poly(vinyl chloride)/poly(ethylene-co-vinyl acetate)/poly(styrene-co-acrylonitrile) (PVC/EVA/SAN) was observed at the micron level. Such miscibility is attributed to the dehydrochlorination and formation of hydrogen bonds between blend components. However, macrolevel immiscibility of these blends heated to the LCST was observed. Such microdomain compatibility of these blends gives a synergistic character. Brittle-type failure observed for LCST samples testifies to the synergism in treated blends. ©1997 SCI  相似文献   

8.
The miscibility of poly(vinyl alcohol) (PVA) and poly(styrenesulfonic acid) (PSSA) in dilute aqueous solutions was studied by a viscosimetric method. At a constant molecular weight of PSSA, it was found that the miscibility of both polymers increases with the molecular weight and the number of acetate groups of the PVA samples (1 and 12% unhydrolyzed sites). Moreover, this miscibility increases slightly with the total mixture concentration in the interval 1–2 g/dL. By comparison of the results of reduced viscosity of PVA/PSSA and PVA/poly(sodium styrenesulfonate) (PSSNa) mixtures, it has been deduced that the miscibility of two polymers is due mainly to intermolecular interactions between the hydroxyl and sulfonic groups of PVA and PSSA, respectively. These groups act as acceptors and donors of hydrogen bonds which are the responsible for polymers' miscibility. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
The compatibility of poly(vinyl chloride) (PVC) with epoxidized styrene-butadiene copolymers is examined at different levels of epoxidation. The copolymers modified were a random (SBR) containing 45 wt% styrene and a triblock (SBS) with 30 wt% bound styrene. Blends were examined in the complete composition range and the approximate levels of epoxidation to ensure blend miscibility were determined. Epoxidized SBS (ESBS) was more effective in miscibility compared with ESBR requiring a lesser degree of epoxidation (43 versus 46 mol%). Tensile properties of the ESBS/PVC blends showed the efficiency of ESBS as a polymeric plasticizer even at levels of epoxidation (ca. 35 mol%) where immiscibility sets in.  相似文献   

10.
The glass transition relaxation of different blends of poly(vinyl acetate) and poly(ethyl methacrylate) have been investigated by dielectric relaxation spectroscopy in the frequency range from 20 Hz to 1 MHz. The obtained results suggest that the poly(vinyl acetate)-rich blends show immiscibility between the two components, whereas the poly(ethyl methacrylate)-rich blends show partial miscibility. The results obtained by differential scanning calorimetry and the analysis of the Maxwell–Wagner–Sillars effect seem to confirm the dielectric relaxation results. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
The miscibility behavior and hydrogen bonding of ternary blends of bisphenol A (BPA)/poly(vinyl acetate) (PVAc)/poly(vinyl pyrrolidone) (PVP) were investigated by using differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR). The BPA is miscible with both PVAc and PVP based on the observed single Tg over the entire composition range. FTIR was used to study the hydrogen-bonding interaction between the hydroxyl group of BPA and the carbonyl group of PVAc and PVP at various compositions. Furthermore, the addition of BPA is able to enhance the miscibility of the immiscible PVAc/PVP binary blend and eventually transforms into miscible blend with single Tg, when a sufficiently quantity of the BPA is present due to the significant Δχ and the ΔK effect.  相似文献   

12.
The miscibility of poly(vinyl chloride)/atactic poly(methyl methacrylate (PVC/a-PMMA) blends was investigated by nonradiative energy transfer fluorescence spectroscopy using naphthalene-labeled PVC (PVC-N) with anthracene-labeled PMMA (PMMA-A), or anthracene-labeled PVC (PVC-A) with carbazole-labeled PMMA (PMMA-C). The two sets of results indicate an increase in energy transfer efficiency, corresponding to an increase in blend miscibility, as the PVC concentration increases and, more importantly, demonstrate that the same information about blend miscibility can be obtained using different donor-acceptor chromophore pairs and by changing the polymer to which the donor or the acceptor is attached. The effect of the tacticity of PMMA on its miscibility with PVC was also investigated using PMMA-C and PVC-A labeled polymers. The results confirm that PVC/a-PMMA blends are more miscible than PVC/i-PMMA blends over a large range of compositions.  相似文献   

13.
Blends of flexible poly(vinyl chloride) (PVC) and a poly(hydroxybutyrate valerate) (PHBV) copolymer were prepared and characterized with different techniques. The tensile strength of PVC did not show a marked reduction at PHBV concentrations up to 50 phr, despite a lack of miscibility between the two polymers. The crystallization of the PHBV copolymer was markedly hindered by the presence of PVC, as calorimetric results revealed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
Fluorescence optical microscopy (FOM) of poly(vinyl alcohol) (PVA) and poly(vinyl acetate) (PVAc) blends in compositions 9/1, 1/1, and 1/9 (w/w) show that these blends present phase separation in the solid state. Each domain of the solid samples was identified by FOM as PVA-richer domains by green fluorescence of fluorescein and PVAc-richer domains by the blue fluorescence of anthracene. The dimensions, shapes, and distributions of these domains were dependent on the initial composition of the polymeric mixtures in the solution. Specific interactions between both homopolymers were studied using FTIR microspectroscopy, which allowed us to obtain spectra for both PVA-richer and PVAc-richer domains. These spectra demonstrated that partial miscibility could occur only for blends with a higher PVAc content and, in these cases, we observed interchain hydrogen-bonded carbonyl groups. Fluorescence microscopy of blends with this partial miscibility exhibited small interconnected domains produced by coalescence of droplets during the polymer phase separation process. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 645–655, 1998  相似文献   

15.
In this work, the molecular weight effect on miscibility between poly(vinyl chloride) (PVC) and poly(methyl methacrylate) (PMMA) in cyclohexanone(CH) solutions at 30 °C was examined by the viscometric method. Three samples of PMMA were prepared by emulsion polymerization, which molecular weights were changed by tert-dodecyl-mercaptan (TDDM) content. The parameter Δb is used to predict polymer-polymer miscibility of PVC/PMMA/cyclohexanone blend. Δb values indicated that the highest molecular weight of PMMA is immiscible with PVC resin. The molecular weight of PMMA decrease with the increase of the contention of TDDM, and the contribution of miscibility PVC/PMMA blend in CH is better.  相似文献   

16.
The ketalization reaction of poly(vinyl alcohol) (PVAL) by cyclic ketones, with dimethyl sulfoxide (DMSO) as solvent, in the presence of an acidic catalyst in homogeneous system, was carried out. The synthesis of poly(vinyl ketals) was thus successfully performed, except for the case of poly(vinyl ketal) highly ketalized by cyclohexanone; these poly(vinyl ketals) with a ketalization degree of more than 60 mol % were insoluble in DMSO, and, thus, the reaction could not be carried out in a homogeneous system. The equilibrium constant at 40°C was ca. 0.50 in the case of cyclohexanone and ca. 0.35 in the case of cyclopentanone, some 10–50 times higher compared with the case of aliphatic ketones. Because the heat of reaction is 7.5 kcal/mol in all ketones, all ketalization reactions are considered to proceed by the same reaction mechanism. Films prepared from the poly(vinyl ketals) were soaked in water, and hydrolysis, degree of swell, and solubility were measured. The dissolution time of films is affected by the kind of the ketones, ketalization degree, and the pH of water, which reveals that deketalization reaction proceeds proportionally to the proton concentration. It is more difficult to dissolve poly(vinyl ketal) obtained by cyclohexanone than that by cyclopentanone. The rate of hydrolysis of poly(vinyl ketal) film obtained by cyclohexanone is nearly equal to that by methyl butyl ketone, and that by cyclopentanone is nearly equal to that by methyl propyl ketone. The contact angle, surface free energy, moisture regain, and water permeability of poly(vinyl ketal) films were measured. All the results show that poly(vinyl ketal) obtained from cyclohexanone is a more hydrophobic polymer than that from cyclopentanone. The hydrophobicity seems to depend upon the kind of the original ketones and the flexibility of the ring. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
The results of the miscibility between the chemically similar polymers poly(methyl methacrylate) (PMMA) and poly(vinyl acetate) (PVAc) published so far show inconsistent statements concerning miscibility. The problems may be due to differences in molecular weights, tacticity, and preparation methods of the polymers. This investigation was carried out by using either chloroform or tetrahydrofuran (THF) as solvent to prepare the blends, because to our knowledge, nobody has reported any tacticity effect of PMMA on the miscibility with PVAc. Therefore, in this article, different tactic PMMAs were used to mix with PVAc and their miscibility was studied calorimetrically. The results showed little effect of solvent and tacticity. PMMA and PVAc were determined to be almost completely immiscible because of the observation of two Tg's. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 35–39, 2004  相似文献   

18.
In this study, hydrogels were prepared from blends of poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP). The miscibility of the polymers was confirmed with differential scanning calorimetry with the appearance of a single glass‐transition temperature. Additionally, a negative Flory–Huggins interaction parameter further verified the interaction between PVA and PVP. We evaluated the stability of the hydrogels by swelling the gels in phosphate‐buffered saline solutions at pH 7.4. With attenuated total reflectance‐Fourier transform infrared spectroscopy, it was determined that, during swelling, PVP dissolved out of the gel over time and the equilibrium gel content of PVP was nearly identical in all of the samples investigated. After the dissolution of PVP, the equilibrium water content of the gels ranged from 64 to 76 wt %. Additionally, rubber elasticity studies were performed to elucidate information about the physically crosslinked network structure. As determined from rubber elasticity experiments, the mesh size of the physically crosslinked hydrogels ranged from 90 to 230 Å. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Shiao Wei Kuo 《Polymer》2008,49(20):4420-4426
Differential scanning calorimetry and one- and two-dimensional Fourier transform infrared (FTIR) spectroscopies have been used to investigate the miscibility of and specific interactions between poly(styrene-co-vinyl phenol) (PSOH) and poly(vinyl phenyl ketone) (PVPK) upon varying the vinyl phenol content of the PSOH copolymer. The FTIR spectra revealed that the phenol units of PVPh interact strongly with the CO groups of PVPK through intermolecular hydrogen bonding, and more weakly with the aromatic rings of PVPK through intermolecular π-π interactions. A miscibility window exists when the vinyl phenol fraction in the copolymer is greater than 20 mol% in the PSOH/PVPK blend system, as predicted using the Painter-Coleman association model.  相似文献   

20.
Differential scanning calorimetry, one‐ and two‐dimensional Fourier transform infrared (FTIR), and solid state nuclear magnetic resonance (NMR) spectroscopy have been used to investigate the miscibility of and specific interactions between poly(styrene‐co‐vinyl phenol) (PSOH) and poly(3‐hydroxybutyrate) (PHB) upon varying the vinyl phenol content of the PSOH copolymer. The FTIR and solid state NMR spectra revealed that the phenol units of PVPh interact with the carbonyl groups of PHB through intermolecular hydrogen bonding. A miscibility window exists when the vinyl phenol fraction in the copolymer is greater than 22 mol % in the PSOH/PHB blend system, as predicted using the Painter–Coleman association model. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号