首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hongshen Li 《Polymer》2006,47(4):1443-1450
A novel fluorinated aromatic dianhydride, 4,4′-[2,2,2-trifluoro-1-(3,5-ditrifluoromethylphenyl) ethylidene] diphthalic anhydride (9FDA), was synthesized, which was employed to polycondense with various aromatic diamines, including 4,4′-oxydianiline, 1,4-bis(4-aminophenoxy) benzene, 3,4′-oxydianiline and 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene to produce a series of fluorinated aromatic polyimides. The fluorinated polyimides obtained had inherent viscosities ranged of 0.61-1.14 dL/g and were easily dissolved both in polar aprotic solvents and in low boiling point common solvents. High quality polyimide films could be prepared by casting the polyimide solution on glass plate followed by thermal baking to remove the organic solvents and volatile completely. Experimental results indicated that the fluorinated polyimides exhibited good thermal stability with glass transition temperature ranged of 245-283 °C and temperature at 5% weight loss of 536-546 °C. Moreover, the polyimide films showed outstanding mechanical properties with the tensile strengths of 87.7-102.7 MPa and elongation at breaks of 5.0-7.8%, good dielectric properties with low dielectric constants of 2.71-2.97 and low dissipation factor in the range of 0.0013-0.0028.  相似文献   

2.
1,4-Bis(2,3-dicarboxyphenoxy)benzene dianhydride, 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride, bis(2,3-dicarboxyphenoxy)sulfide dianhydride, bis(3,4-dicarboxyphenoxy)sulfide dianhydride, and 2,3,3′,4′-tetracarboxy diphenyl sulfide dianhydride were synthesized from 3-chlorophthalic anhydride and 4-chlorophthalic anhydride. Bis(2,3-dicarboxyphenyl)sulfone and bis(3,4-dicarboxyphenyl)sulfone were obtained by the oxidation of the corresponding bis(dicarboxyphenyl)sulfide by hydrogen peroxide. The polyimides from the dianhydrides mentioned above and 4,4′-oxydianiline were prepared. The properties, such as dynamic mechanical behavior, thermooxidative stability, stress-strain behavior, chemical resistance, and permeability to some gases have been in investigated for the isomeric polyimides. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
A series of new, organosoluble, and light‐colored poly(amide imide imide)s were synthesized from tetraimide dicarboxylic acid ( I ) and various aromatic diamines by direct polycondensation with triphenyl phosphite and pyridine as condensing agents. I was prepared by the azeotropic condensation of 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride, m‐aminobenzoic acid, and 4,4′‐oxydianiline at a 2/2/1 molar ratio in N‐methyl‐2‐pyrrolidone (NMP)/toluene. The thin films cast from N,N‐dimethylacetamide (DMAc) had cutoff wavelengths shorter than 400 nm (365–394 nm) and color coordinate b* values between 13.10 and 36.07; these polymers were lighter in color than the analogous poly(amide imide)s and isomeric polymers. All of the polymers were readily soluble in a variety of organic solvents, including NMP, DMAc, N,N‐dimethylformamide, dimethyl sulfoxide, and even less polar dioxane and tetrahydrofuran. The cast films exhibited tensile strengths of 90–104 MPa, elongations at break of 7–22%, and initial moduli of 1.9–2.4 GPa. The glass‐transition temperatures of the polymers were recorded at 274–319°C. They had 10% weight losses at temperatures beyond 520°C and left more than a 50% residue even at 800°C in nitrogen. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 669–679, 2003  相似文献   

4.
A series of polyimides (PIs) based on 2,3,3′,4′-benzophenonetetracarboxylic dianhydride (2,3,3′,4′-BTDA) and 3,3′,4,4′-BTDA were prepared by the conventional two-step process. The properties of the 2,3,3′,4′-BTDA based polyimides were compared with those of polyimides prepared from 3,3′,4,4′-BTDA. It was found that PIs from 2,3,3′,4′-BTDA have higher glass transition temperature and better solubility without sacrificing their thermal properties. Furthermore the rheological properties of PMR-15 type polyimide resins based on 2,3,3′,4′-BTDA showed lower melt viscosity and wider melt flow region (flow window) compared with those from 3,3′,4,4′-BTDA. The structure-property relations resulted from isomerism were discussed.  相似文献   

5.
A novel fluorinated diamine monomer, 4,4′-bis(4-amino-2-trifluoromethylphenoxy)-3,3′,5,5′-tetramethylbiphenyl, was prepared by a nucleophilic chloro-displacement reaction of 3,3′,5,5′-tetramethyl-4,4′-biphenol with 2-chloro-5-nitrobenzotrifluoride and subsequent reduction of the intermediate dinitro compound. The diamine was reacted with aromatic dianhydrides to form polyimides via a two-step polycondensation method; formation of poly(amic acid)s, followed by thermal imidization. All the resulting polyimides were readily soluble in many organic solvents and exhibited excellent film forming ability. The polyimides exhibited high Tg (312-351 °C), good thermal stability, and good mechanical properties. Low moisture absorptions (0.2-1.1 wt%), low dielectric constants (2.54-3.64 at 10 kHz), and low color intensity were also observed.  相似文献   

6.
The microwave assisted polycondensation of two polyimides were studied using pyromellitic dianhydride (PMDA), and 4,4′‐(hexafluoroisopropyliden)diphthalic anhydride (6FDA) as dianhydride monomers and 2,4,6‐trimethyl‐m‐phenylenediamine (TrmPD), as diamine monomer, under microwave irradiation in DMF and DMSO solvents. The structure and performance of polymers were characterized by Fourier Transform Infrared Spectroscopy (FTIR), viscosity, density, and Thermogravimetric Analysis (TGA). The results show that the polyimides can be obtained in a short reaction time with high intrinsic viscosity and high yield. The effect of the presence of a bridging group, ? C(CF3)2? , in the monomer structure is apparent in the permeability parameters of the macromolecules as polymer (6FDA‐TrmPD) always presents better results than polymer (PMDA‐TrmPD). Properties as density and Tg increases with the time exposition to the microwave irradiation. Polyimides obtained present good thermal properties because they began to lose weight in a range of 8–16% at high temperature as 450°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
K. Chen  Y.Z. Meng  A.S. Hay 《Polymer》2004,45(6):1787-1795
Ring-opening polymerization of macrocyclic(aromatic disulfide) oligomer derived from 4,4′-oxybis(benzenethiol) was studied. Ring-opening reactions were carried out in nitrogen and oxygen atmosphere, respectively. Oxidation reaction and cross-linking reaction took place in oxygen atmosphere. The melt copolymerization between cyclic 1 and elemental sulfur was studied using DSC, and TGA techniques. With increasing the contents of sulfur in the polymer, the Tg values, and 5% weight loss temperatures decreased. When the ratio of sulfur to cyclic reached 5, the polymer appeared as a rubber with a Tg of 23.0 °C and a 5% weight loss temperature of 269.4 °C. A series of poly(thiol aromatic)s were prepared from cyclic 1 and dibromo aromatic compounds in diphenyl ether at 260 °C. The dibromo aromatic compounds can be bis(4-bromophenyl) ether, 4,4′-dibromobiphenyl, and 1,4-dibromobenzene. 4,4′-Dibromobiphenyl gave poly(thiol aromatic) with a Tg of 122.2 °C and a Tm of 221.3 °C by reacting with the cyclic 1.  相似文献   

8.
Jingling Yan 《Polymer》2007,48(21):6210-6214
A series of sulfonated polyimides (SPIs) were synthesized in m-cresol from 4,4′-binaphthyl-1,1′,8,8′-tetracarboxylic dianhydride (BNTDA), 4,4′-diaminodiphenylether-2,2-disulfonicacid (ODADS), and 4,4′-diamino-diphenyl ether (ODA) in the presence of triethylamine and benzoic acid. The resulted polyimides showed much better water resistance than the corresponding sulfonated polyimides from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) and ODADS, which is contributed to the higher electron density in the carbonyl carbon atoms of BNTDA. Copolyimides S-75 and S-50 maintained their mechanical properties and proton conductivities after aging in water at 100 °C for 800 h. The proton conductivity of these SPIs was 0.0250-0.3565 S/cm at 20 °C and 100% relative humidity (RH), and increased to 0.1149-0.9470 S/cm at 80 °C and 100% RH. The methanol permeability values of these SPIs were in the range of 0.99-2.36 × 10−7 cm2/s, which are much lower than that of Nafion 117 (2 × 10−6 cm2/s).  相似文献   

9.
Zhiming Qiu  Suobo Zhang 《Polymer》2005,46(5):1693-1700
A novel method for the preparation of 2,2′-diphenoxy-4,4′,5,5′-biphenyltetracarboxylic dianhydride have been investigated. This new dianhydride contains flexible phenoxy side chain and a twist biphenyl moiety and it was synthesized by the nitration of an N-methyl protected 3,3′,4,4′-biphenyltetracarboxylic dianhydride and subsequent aromatic nucleophilic substitution with phenoxide. The overall yield was up to 75%. The dianhydride was polymerized with five different aromatic diamines to afford a series of aromatic polyimides. The polyimide properties such as inherent viscosity, solubility, UV transparency and thermaloxidative properties were investigated to illustrate the contribution of the introduction of phenoxy group at 2- and 2′-position of BPDA dianhydride. The resulting polyimides possessed excellent solubility in the fact that the polyimide containing rigid diamines such as 1,4-phenylenediamine and 4,4′-oxydianiline were soluble in various solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, dimethyl sulfoxide and chloroform. The glass-transition temperatures of the polymers were in the range of 255-283 °C. These polymers exhibited good thermal stability with the temperatures at 5% weight loss range from 470 to 528 °C in nitrogen and 451 to 521 °C in air, respectively. The polyimide films were found to be transparent, flexible, and tough. The films had a tensile strength, elongation at break, and Young's modulus in the ranges 105-168 MPa, 15-51%, 1.87-2.38 GPa, respectively.  相似文献   

10.
The voltammetric behaviour at carbon fibre microelectrodes under the application of static magnetic fields of two series of macrolactams containing in their structure 4,4′-bis(dimethylamino)biphenyl or 4,4′-dinitrobiphenyl groups in MeCN solution is described. The response of 4,4′-dinitrobiphenyl receptors is dominated by two successive one-electron reduction processes at −0.9 and −1.6 V versus AgCl/Ag. 4,4′-bis(dimethylamino)biphenyl-containing receptors display two one-electron oxidations above +0.8 and +1.0 V. In both cases, a dihedral/planar interconversion precedes the second electron transfer step. Upon application of moderate (0.05-0.2 T) static magnetic fields to the electrochemical cell, the rate of such dihedral/planar interconversion is lowered for both the reduction of 4,4′-dinitrobiphenyl receptors and the oxidation of 4,4′-bis(dimethylamino)biphenyl lactams. The electrochemical response of N-methylated receptors, for which different cisoid-cisoid, cisoid-transoid, and transoid-transoid forms exist, exhibits a significant peak splitting that can be associated to the presence of such conformational isomers. Application of magnetic fields produces a relative enhancement of some peaks that can be interpreted in terms of differential magnetoconvection involving such conformational isomers.  相似文献   

11.
B.Y Myung 《Polymer》2004,45(10):3185-3193
Mono-substituted dianhydride monomer, 1-(3′,5′-bis(trifluoromethyl)phenyl) pyromellitic dianhydride (6FPPMDA), was prepared via the Suzuki cross coupling reaction followed by oxidation and cyclodehydration. The monomer was characterized by FT-IR, NMR, elemental analyzer (EA) and melting point apparatus. For comparison, 1-(4′-trifluoromethylphenyl)pyromellitic dianhydride (3FPPMDA) and 1-phenyl pyromellitic dianhydride (PPMDA) were also utilized. The dianhydrides were used to prepare polyimides with aromatic diamines such as bis(3-aminophenyl) 3,4-bis(trifluoromethyl)phenyl phosphine oxide (mDA6FPPO), bis(3-aminophenyl) 4-(trifluoromethyl)phenyl phosphine oxide (mDA3FPPO), bis(3-aminophenyl) phenyl phosphine oxide (mDAPPO) and 1,1-bis(4-aminophenyl)-1-phenyl-2,2,2-trifluoroethane (p3FDAm). The polyimides were synthesized via a two-step process; preparation of poly(amic-acid) in p-chlorophenol with isoquinoline, followed by solution imidization at the reflux temperature for 12 h. Polymer characterization was carried out by FT-IR, NMR, GPC, DSC and TGA, and their solubility, solution viscosity, water absorption, CTE, dielectric constant and refractive index were also evaluated.  相似文献   

12.
Three monomers were prepared from 4,4-bis(4′-hydroxyphenyl)valeric acid (BHVA) namely its methylester (BHVAM), its bis-acetylated methylester (BAVAM) and its 4,4-bis(4′-acetoxyphenyl)valeric acid (BAVA). All three monomers were polycondensed in bulk at various temperature profiles using Ti(OBu)4, Co(OAc)2, Mn(OAc)2, Sn(OAc)2 or Bu2Sn(OAc)2 as transesterification catalysts. The structure of the resulting ‘hyperbranched’ polyesters were characterized by 1H NMR spectroscopy, MALDI-TOF mass spectroscopy and in selected cases by SEC. Regardless of the reaction conditions only low oligomers almost free of cycles were obtained from the methylesters BHVAM and BAVAM. Higher molecular weights and high contents of cycles were obtained from polycondensations of BAVA. The content of cycles increased with the conversion. Hyperbranched polyesters with cyclic core were detected up to masses around 10,000 Da. The reactivities of the three hyperbranched monomers were compared with those of bisphenol-A plus dimethyl sebacate or acetylated bisphenol-A plus sebacic acid in ‘linear polycondensations’ and close analogies were found.  相似文献   

13.
The synthesis and characterization of a novel donor acceptor donor type bis(3,4-ethylene-dioxythiophene)-(4,4′-dinonyl-2,2′-bithiazole) comonomer and its electrochemically prepared polymer on carbon fiber, Pt button and ITO plate is reported in this paper. Cyclic voltammetry of the polymer in 0.1 M Et4NBF4/CH2Cl2 exhibits a very well defined and reversible redox processes and this co-monomer can be either p-doped or n-doped. The half-wave oxidation potentials of the polymer (E1/2) were observed at 0.303 and 0.814 V versus Ag/AgCl. The polymer is electrochromic; the onset for the π-π* transition (Eg) of 1.75 eV with a λmax at 2.15 eV and the homogeneous and high quality film of the polymer is stable of its optical properties offering fast switching time which is less than 0.25 s. The morphological studies reveal that the polymer was deposited as a continuous and very well adhering film to surface of the carbon fiber microelectrode. All these properties make this polymer favorable for use in electronic devices.  相似文献   

14.
A novel fluorinated aromatic diamine, bis[4-(4′-aminophenoxy)phenyl]-3,5-bis(trifluoromethyl)phenyl phosphine oxide, was synthesized. A series of new fluorinated polyimides containing phosphine oxide was prepared from the novel diamine with various commercially available aromatic dianhydrides. All the fluorinated polyimides show high glass transition temperatures, excellent thermal stability, and good solubility in common organic solvents.  相似文献   

15.
Thermal properties of polyimides with main chain containingalicyclic units derived from 3,3′ 4,4′‐oxydiphthalic anhydride (ODPA) and several alicyclic‐ containing diamine monomers, including 1,4‐bis (4‐aminophenoxymethylene) cyclohexane (BAMC), 1,4‐bis (3‐aminophenoxymethylene) cyclohexane (mBAMC), 1,4‐bis (4‐aminobenzoyoloxymethyl) cyclohexane (BAZMC), and 1,4‐bis (3‐aminobenzoyoloxymethyl) cyclohexane (mBAZMC) were characterized in detail. The thermal stability, apparent activation energy, and evolved gas analysis of these polyimides were done using thermogravimetric analysis (TGA) coupled with Fourier transform infrared (FTIR) spectroscopy. Experimental results indicated that the resulting polyimides showed fairly high thermal stability, no weight loss was detected before a temperature of 400°C in nitrogen, and the values of glass‐transition temperature of them were in the range of 134–181°C. Activation energy for the initial thermal degradation of polyimide derived from ODPA and mBAMC in nitrogen were 166 and 162 kJ/mol in two different methods. The TG‐IR results represented that the major evolved products from the nonoxidative thermal degradation were detected to be hydrocarbons, CO, CO2, H2O, and aromatic compounds. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers.  相似文献   

16.
A series of novel homo‐ and copolyimides containing pyridine units were prepared from the heteroaromatic diamines, 2,5‐bis (4‐aminophenyl) pyridine and 2‐(4‐aminophenyl)‐5‐aminopyridine, with pyromelltic dianhydride (PMDA), and 3,3′, 4,4′‐biphenyl tertracarboxylic dianhydride (BPDA) via a conventional two‐step thermal imidizaton method. The poly(amic acid) precursors have inherent viscosities of 1.60–9.64 dL/g (c = 0.5 g/dL in DMAC, 30°C) and all of them can be cast and thermally converted into flexible and tough polyimide films. All of the polyimides show excellent thermal stability and mechanical properties. The polyimides have 10% weight loss temperature in the range of 548–598°C in air. The glass transition temperatures of the PMDA‐based samples are in the range of 395–438°C, while the BPDA‐based polyimides show two glass transition temperatures (Tg1 and Tg2), ranging from 268 to 353°C and from 395 to 418°C, respectively. The flexible films possess tensile modulus in the range of 3.42–6.39 GPa, strength in the range of 112–363 MPa and an elongation at break in the range of 1.2–69%. The strong reflection peaks in the wide‐angle X‐ray diffraction patterns indicate that the polyimides have a high packing density and crystallinity. The polymer films are insoluble in common organic solvents exhibiting high chemical resistance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1844–1851, 2006  相似文献   

17.
Four series of aromatic polyimides (PIs V–VIII) composed of biphenyltetracarboxylic dianhydrides (BPDAs) and aromatic diamines bearing alkylene spacers were prepared by two methods. Most polymers could be readily prepared in a one‐step method for the combination of a‐BPDA with α,ω‐bis(3‐aminophenoxy)alkanes, a‐BPDA with α,ω‐bis(4‐aminophenoxy)alkanes, and s‐BPDA with α,ω‐bis(3‐aminophenoxy)alkanes. However, the polymerization of s‐BPDA with α,ω‐bis(4‐aminophenoxy)alkanes gave powders. On the other hand, all four monomer combinations afforded the desired polyamic acid solution in a two‐step method. These polymer solutions could be cast into tough and flexible films, which were characterized by their inherent viscosity, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical spectrometry measurements. The glass transition temperatures (Tgs) of the polymers were in the range of 110–240°C, but they were not clearly defined for PIs VIII and VI. The 5% weight loss temperatures were around 450°C for all prepared PIs. For PI VIII an “odd–even” behavior of the tensile properties of the films was detected, corresponding to the reported behavior of the melting temperatures. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2404–2413, 1999  相似文献   

18.
A new diamine monomer containing noncoplanar methyl substitution, 2,2′-dimethyl-4,4′-bis(2-trifluoromethyl-4-aminophenoxy)biphenyl (DBTFAPB) was successfully synthesized and used in the preparation of a series of polyamides and polyimides by direct polycondensation with various aromatic dicarboxylic acids and tertacarboxylic dianhydrides. A new noncoplanar dicarboxylic acid monomer containing noncoplanar methyl substitution, 2,2′-dimethyl-4,4′-bis(2-trifluoromethyl-4-trimellitimidophenoxy)biphenyl (DBTFTPB) was also successfully synthesized by refluxing the diamine, DBTFAPB, with trimellitic anhydride in glacial acetic acid. A series of new poly(amide-imide)s were prepared directly from DBTFTPB with various diamines in N-methyl-2-pyrrolidinone (NMP). All the polymers exhibited excellent solubility in solvents, such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), pyridine, tetrahydrofuran (THF), cyclohexanone and γ-butyrolactone at room temperature or upon heating at 70 °C. Inherent viscosities of the polymers were found to range between 0.60 and 1.34 dL g−1. Gel permeation chromatography (GPC) of the polymers showed number-average and weight-average molecular weight up to 7.3×104 and 17.9×104, respectively. These polymers showed that the glass transition temperatures were between 230 and 265 °C, and the 10% mass loss temperatures were higher than 460 °C in nitrogen atmosphere. All the polymers could be cast into flexible and tough films from DMAc solutions. They had a tensile strength in the range of 82-124 MPa and a tensile modulus in the range of 1.9-2.9 GPa. These polymers exhibited low dielectric constants ranging from 2.87 to 4.03, low moisture absorption in the range of 0.29-3.20%, and high transparency with an ultraviolet-visible absorption cut-off wavelength in the 347-414 nm range.  相似文献   

19.
A novel pyridine-containing aromatic dianhydride monomer, 2,6-bis[4-(3,4-dicarboxyphenoxy)benzoyl]pyridine dianhydride, was synthesized from the nitro displacement of 4-nitrophthalonitrile by the phenoxide ion of 2,6-bis(4-hydroxybenzoyl)pyridine, followed by acidic hydrolysis of the intermediate tetranitrile and cyclodehydration of the resulting tetraacid. A series of new polyimides holding pyridine moieties in main chain were prepared from the resulting dianhydride monomer with various aromatic diamines via a conventional two-stage process, i.e. ring-opening polycondensation forming the poly(amic acid)s and further thermal or chemical imidization forming polyimides. The inherent viscosities of the resulting polyimides were in the range of 0.51-0.68 dL/g, and most of them were soluble in aprotic amide solvents and cresols, such as N,N-dimethylacetamide, N-methyl-2-pyrrolidone, and m-cresol, etc. Meanwhile, some strong and flexible polyimide films were obtained, which have good thermal stability with the glass transition temperatures of 221-278 °C, the temperature at 5% weight loss of 512-540 °C, and the residue at 800 °C of 60.4-65.3% in nitrogen, as well as have outstanding mechanical properties with the tensile strengths of 72.8-104.4 MPa and elongations at breakage of 9.1-11.7%. The polyimides also were found to possess low dielectric constants.  相似文献   

20.
A new kind of aromatic unsymmetrical diamine monomer containing thiazole ring, 2-amino-5-[4-(4′-aminophenoxy)phenyl]-thiazole (APPT), was synthesized. A series of novel polyimides were prepared by polycondensation of APPT with various aromatic dianhydrides via one-step process. The resulting polyimides held inherent viscosities of 0.40-0.71 dL/g and were easily dissolved in strong dipolar solvents. Meanwhile, strong and flexible polyimide films were obtained, which had thermal stability with the glass transition temperatures (Tg) of 268.2-328.8 °C in nitrogen, the temperature at 5% weight loss of 452-507 °C in nitrogen and 422-458 °C in air, and the residue at 800 °C of 54.18-63.33% in nitrogen, as well as exhibited outstanding mechanical properties with the tensile strengths of 105.4-125.3 MPa, elongations at breakage of 6-13%. These films also held dielectric constants of 3.01-3.18 (10 MHz) and showed predominantly amorphous revealed by wide-angle X-ray diffraction measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号